Bilgi teknolojilerindeki ilerlemeler ile, Web’te aralarında sosyo-ekonomik ve epidemiyolojik konuların da yer aldığı birçok konuda önemli boyutta metin belgeleri paylaşılmaktadır. Internetteki çeşitli platformlarda paylaşılan haber makaleleri, hastalık raporları ve haber bültenleri gibi metin-tabanlı paylaşımlar, ortaya çıkan bulaşıcı hastalık salgınlarının erken tespiti için de önemli bir bilgi kaynağı niteliğine sahiptir. Bu bilgi, web tabanlı biyo-gözetim sistemleri geliştirilmesi için de son derece kritik önem taşımaktadır. Webte yayınlanan haber makalelerinin sayısının sürekli olarak artması, bu kaynaklarının hastalık, salgın ve sosyo-ekonomik faktörleri önceden belirlemede kullanılmasını zorlaştırmaktadır. Bu nedenle, etkin bir web tabanlı biyogözetim sistemi geliştirilmesi için, haber metinlerini uygun konulara hızlı ve yüksek başarım ile atayan metin madenciliği ve makine öğrenmesi tabanlı sistemlere gereksinim duyulmaktadır. Bu çalışmada, hayvanlar üzerinde viral bir hastalık olan ASF ve sosyo-ekonomik konularda haber metinleri içeren bir derlem üzerinde temel makine öğrenmesi sınıflandırma algoritmalarının, sınıflandırıcı topluluğu mimarilerinin ve temel metin temsil yöntemlerinin başarımları karşılaştırmalı olarak değerlendirilmiştir. Haber metinlerinin temsil edilmesinde üç temel n-gram modeli olan (1-gram, 2-gram ve 3-gram) temsilleri, terim sıklığı, terim varlığı ve TF-IDF terim ağırlıklandırma yaklaşımları ile birarada kullanılarak toplam dokuz farklı metin temsili elde edilmiştir. Elde edilen metin temsilleri, dört temel sınıflandırma algoritması olan Naive Bayes algoritması, destek vektör makineleri, k-en yakın komşu algoritması ve lojistik regresyon algoritmaları ile değerlendirilmiştir. Bunun yanı sıra, torbalama yöntemi, yükseltme yöntemi, rastgele alt-uzay yöntemi ve çoğunluk oylaması algoritması kullanılarak, haber metinlerinden sosyo-ekonomik ve epidemiyolojik konuların saptanmasında, topluluk öğrenme yöntemlerinin etkinlikleri de analiz edilmiştir. Deneysel analizlerde kullanılan temel sınıflandırıcılar arasında en yüksek başarım Naive Bayes algoritması ile topluluk öğrenmesi mimarileri arasında en yüksek başarım ise rastgele alt-orman algoritmasının Naive Bayes ile kullanılmasıyla elde edilmiştir. Deneysel sonuçlar, metin madenciliği ve makine öğrenmesi yöntemlerinin salgın hastalıkların erken belirlenmesi için kullanılmasının uygun olduğunu göstermektedir.
With the advances in information technologies, important text documents are shared on the Web on many topics, including socio-economic and epidemiological issues. Text-based posts, such as, news articles, disease reports and news bulletins shared on various platforms on the Internet are also important sources of information for early detection of emerging infectious disease outbreaks. This information is also critical for the development of web-based bio-surveillance systems. The continuous increase in the number of news articles published on the web makes it difficult to use these sources to predict disease, epidemic and socio-economic factors. Therefore, in order to develop an effective web-based bio-surveillance system, text mining and machine learning-based systems are required that assign news texts to appropriate topics with high predictive performance and speed. In this study, the performance of conventional machine learning classifiers, ensemble learning architectures and conventional text representation methods were evaluated comparatively on a collection of ASF, a viral disease on animals, and news texts on socio-economic issues. A total of nine different text representations were obtained by using three basic n-gram model (1-gram, 2-gram and 3-gram) representations, term frequency, term existence and TF-IDF term weighting approaches to represent news texts. The text representations obtained were evaluated using five basic classification algorithms, namely, Naive Bayes algorithm, support vector machines, k-nearest neighbor algorithm, and logistic regression algorithms. In addition, the predictive performances of ensemble learning methods (namely, Bagging method, Boosting method, random subspace method and majority voting algorithm) have been evaluated on the identification of socio-economic and epidemiological issues from news texts. Among the basic classifiers used in experimental analysis, the highest performance was obtained with Naive Bayes algorithm and community learning architectures, while the highest performance was obtained by using the random sub-forest algorithm with Naive Bayes. Experimental results show that it is appropriate to use text mining and machine learning methods for early detection of epidemics.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Temmuz 2021 |
Yayımlandığı Sayı | Yıl 2021 Sayı: 26 - Ejosat Özel Sayı 2021 (HORA) |