Konferans Bildirisi
BibTex RIS Kaynak Göster

The Paradigm For Solving The Derivation Problem In Infinite Models

Yıl 2021, Sayı: 28, 545 - 547, 30.11.2021
https://doi.org/10.31590/ejosat.1008716

Öz

The problem of finding the most probable derivation for probabilistic context-free grammar is expensive. The Viterbi algorithm has been adopted to one-counter grammar that is a sub-class of stochastic context-free grammar to solve this issue. However, the absence of the implementation of the adapted algorithm attracts our attention. We experimentally validate this algorithm and present the implementation part of it to monitor the performance, in this research.

Kaynakça

  • C. D. Manning and H. Schutze, Foundation of Statistical Natural Languages MIT Press, Cambridge, MA, USA, 1999.
  • A. Sakharov and T. Sakharov, “The Viterbi algorithm for subsets of stochastic context-free languages”, Information Processing Letters., vol. 135, pp. 68-72, Jul. 2018.
  • J. Autebert, J. Berstel and L. Boasson, Context-free Languages and Pushdown Automata in: Handbook of Formal Languages, Springer,1997.
  • J. C. Chappelier, and M. Rajman, “A generalized cyk algorithm for parsing stochastic cfg,” in Proc.TAPD’98, 1998, p. 133.
  • A. J. Viterbi, “A personal history of the Viterbi algorithm,” IEEE Signal Process., vol. 4, pp. 120, 2006.
  • B. Brejova, D. G. Brown and T. Vinar, “Advances in hidden Markov models for sequence annotation”, Bioinformatics Algorithm: Techniques and Application, vol. 3, pp. 55-92, 2008.
  • L. R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, Morgan Kaufmann Publishers Inc., 1990, p. 267.
  • K Etessami, D. Wojtczak and M. Yannakakis, “Quasi-birth-death processes, tree-like qbds, probabilistic 1-counter automata, and pushdown system,” in QEST’08, 2008, p. 243.

Sonsuz Modellerde Türetme Problemini Çözme Uygulaması

Yıl 2021, Sayı: 28, 545 - 547, 30.11.2021
https://doi.org/10.31590/ejosat.1008716

Öz

Olasılıksal bağlamdan bağımsız dilbilgisi için en olası türetmeyi bulma probleminin çözümü pahalıdır. Bu problemin çözümü için Viterbi algoritması, olasılıksal bağlamdan bağımsız dilbilgisinin bir alt sınıfı olan tek sayaçlı dilbilgisine uayarlanmıştır. Ancak adapte edilen algoritmanin uygulanmamış olması dikkatimizi çekmektedir. Bu araştırmada, bu algoritmayı deneysel olarak doğruladık ve uygulamada izlenilen performansı sunuyoruz.

Kaynakça

  • C. D. Manning and H. Schutze, Foundation of Statistical Natural Languages MIT Press, Cambridge, MA, USA, 1999.
  • A. Sakharov and T. Sakharov, “The Viterbi algorithm for subsets of stochastic context-free languages”, Information Processing Letters., vol. 135, pp. 68-72, Jul. 2018.
  • J. Autebert, J. Berstel and L. Boasson, Context-free Languages and Pushdown Automata in: Handbook of Formal Languages, Springer,1997.
  • J. C. Chappelier, and M. Rajman, “A generalized cyk algorithm for parsing stochastic cfg,” in Proc.TAPD’98, 1998, p. 133.
  • A. J. Viterbi, “A personal history of the Viterbi algorithm,” IEEE Signal Process., vol. 4, pp. 120, 2006.
  • B. Brejova, D. G. Brown and T. Vinar, “Advances in hidden Markov models for sequence annotation”, Bioinformatics Algorithm: Techniques and Application, vol. 3, pp. 55-92, 2008.
  • L. R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, Morgan Kaufmann Publishers Inc., 1990, p. 267.
  • K Etessami, D. Wojtczak and M. Yannakakis, “Quasi-birth-death processes, tree-like qbds, probabilistic 1-counter automata, and pushdown system,” in QEST’08, 2008, p. 243.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Kurucan 0000-0003-4359-3726

Mete Özbaltan 0000-0002-3215-6363

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Kurucan, M., & Özbaltan, M. (2021). The Paradigm For Solving The Derivation Problem In Infinite Models. Avrupa Bilim Ve Teknoloji Dergisi(28), 545-547. https://doi.org/10.31590/ejosat.1008716