Araştırma Makalesi
BibTex RIS Kaynak Göster

Number of Subsets of the Set [n] Including No Three Consecutive Even Integers.

Yıl 2021, Sayı: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Öz

Consider an integer sequence counting the number of subsets of S of the set {1,2, . . . ,n } containing no three consecutive even integers. The sequence is associated with the Tribonacci sequence. Furthermore, we investigate some basic properties of the sequence.

Kaynakça

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.

[n] Kümesinin Ardışık Üç Çift Tam Sayı İçermeyen Alt Kümelerinin Sayısı

Yıl 2021, Sayı: 28, 552 - 556, 30.11.2021
https://doi.org/10.31590/ejosat.1008742

Öz

{1,2, . . . ,n } kümesinin ardışık üç çift tam sayı içermeyen S alt kümelerinin sayısını veren tam sayı dizisini alalım. Bu dizi Tribonacci sayı dizisi ile ilişkilendirildi. Ayrıca dizinin bazı temel özellikleri incelendi.

Kaynakça

  • Bueno, A. C. F. (2015). A note on generalized Tribonacci sequence, Notes on Number Theory and Discrete Mathematics, 21, 67-69.
  • Feinberg, M. (1963). Fibonacci–Tribonacci, Fibonacci Quarterly, 1, 71–74.
  • Pethe, S. (1988). Some Identities for Tribonacci sequences, Fibonacci Q., 26, 144–151.
  • Ramirez, J. L. and Sirvent, V. F. (2014), Incomplete Tribonacci numbers and polynomials, Journal of Integer Sequences, 17 Article 14.4.2.
  • Shannon, A. (1977). Tribonacci numbers and Pascal’s pyramid, Fibonacci Q., 15, 268–275.
  • Spickerman, W. and Joyner, R. N. Binets’s formula for the Recursive sequence of Order K, Fibonacci Q., 22, 327–331.
  • Spickerman, W. (1982). Binet’s formula for the Tribonacci sequence, Fibonacci Q., 20, (118-120).
  • Wilf, H. S. (1990). Generatingfunctionology, Academic Press.
  • Yalavigi, C. C. (1972), Properties of Tribonacci numbers, Fibonacci Quarterly, 10 231–246.
  • Yilmaz, N. and Taskara, N. (2014). Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Appl. Math. Sci., 8(39), 1947–1955.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Barış Arslan 0000-0002-6972-3317

Kemal Uslu 0000-0001-6265-3128

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Arslan, B., & Uslu, K. (2021). Number of Subsets of the Set [n] Including No Three Consecutive Even Integers. Avrupa Bilim Ve Teknoloji Dergisi(28), 552-556. https://doi.org/10.31590/ejosat.1008742