Araştırma Makalesi
BibTex RIS Kaynak Göster

Replacement of Extrusion by Temperature-Controlled Ultrasonication in Emulsome Production

Yıl 2021, Sayı: 28, 584 - 589, 30.11.2021
https://doi.org/10.31590/ejosat.1009437

Öz

Emulsomes are lipid-based drug delivery systems comprising of a solid fat core surrounded by phospholipid multi-layers. Stability, prolonged release profile, biocompatibility and high encapsulation capacity for lipophilic compounds are their most prominent features. This study investigates the suitability of a temperature-controlled ultrasonication procedure to replace extrusion step that is widely applied for production and homogenization of emulsomes. In this study, emulsomes homogenized through ultrasonication were evaluated based on physicochemical properties including size, morphology and zeta potential. Temperature-controlled ultrasonication yielded production of tripalmitin-based emulsomes with size 285.6 ± 68.7 nm and zeta potential 31.6 ± 9.3 mV in average. Hexadecylamine in the phospholipid composition conferred the formulation a net positive surface charge. The morphology of emulsomes were investigated with scanning electron microscope. To further investigate whether ultrasonication alters the encapsulation capacity of emulsomes for lipophilic compounds, curcumin was added to the formulation as a model lipophilic substance. The physicochemical features as well as loading capacity of emulsomes produced with the introduced approach were compared with the values in the literature, where emulsomes of the same composition were homogenized through extrusion during their production. The results suggested that the control on temperature at ultrasonication benefited on emulsome production with high reproducibility in size and zeta potential and regarded as the solid feature of the proposed approach. In conclusion, the study provides evidence that the temperature-controlled ultrasonication methodology can safely replace the extrusion step as a robust, reliable approach for production of emulsomes.

Destekleyen Kurum

Tübitak 2232

Proje Numarası

115C022

Teşekkür

The author thanks The Scientific and Technological Research Council of Turkey (TÜBİTAK) for support under 2232 Postdoctoral Reintegration Fellowship Program with project number 115C022. The author also thanks to Dr. Hasan Kurt and Sabancı University Nanotechnology Research and Application Center (SUNUM) for providing support to SEM imaging.

Kaynakça

  • Alhakamy, N. A., Badr-Eldin, S. M., Ahmed, O. A. A., Asfour, H. Z., Aldawsari, H. M., Algandaby, M. M., Eid, B. G., Abdel-Naim, A. B., Awan, Z. A., & Alghaith, A. F. (2020). Piceatannol-loaded emulsomes exhibit enhanced cytostatic and apoptotic activities in colon cancer cells. Antioxidants, 9(5), 419.
  • Alhakamy, N. A., Badr-Eldin, S. M., Aldawsari, H. M., Alfarsi, A., Neamatallah, T., Okbazghi, S. Z., Fahmy, U. A., Ahmad, O. A. A., Eid, B. G., Mahdi, W. A., Alghaith, A. F., Alshehri, S., & Md, S. (2021). Fluvastatin-Loaded Emulsomes Exhibit Improved Cytotoxic and Apoptosis in Prostate Cancer Cells. AAPS PharmSciTech, 22(5), 1–13.
  • Amselem, S., Yogev, A., Zawoznik, E., & Friedman, D. (1994). Emulsomes, a novel drug delivery technology. Proceedings of the Controlled Release Society, 21(21), 668–669.
  • Amselem, S, & Friedman, D. (1997). Solid fat nanoemulsions. In Solid Fat Nanoemulsions. Google Patents.
  • Amselem, Shimon, Zawoznik, E., Yogev, A., & Friedman, D. (2018). EmulsomesTM, a new type of lipid assembly. In Handbook of Nonmedical Applications of Liposomes: Volume III: From Design to Microreactors (pp. 209–223). CRC Press.
  • Awan, Z. A., Fahmy, U. A., Badr-eldin, S. M., Ibrahim, T. S., Asfour, H. Z., Al-rabia, M. W., Alfarsi, A., Alhakamy, N. A., Abdulaal, W. H., Sadoun, H. Al, Helmi, N., Noor, A. O., Caraci, F., Almasri, D. M., & Caruso, G. (2020). The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells. Pharmaceutics, 12(7), 1–22.
  • Ban, C., Lim, S., Chang, P. S., & Choi, Y. J. (2014). Enhancing the stability of lipid nanoparticle systems by sonication during the cooling step and controlling the liquid oil content. Journal of Agricultural and Food Chemistry, 62(47), 11557–11567.
  • Bolat, Z. B., Islek, Z., Demir, B. N., Yilmaz, E. N., Sahin, F., & Ucisik, M. H. (2020). Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Frontiers in Bioengineering and Biotechnology, 8.
  • El-Zaafarany, G. M., Soliman, M. E., Mansour, S., Cespi, M., Palmieri, G. F., Illum, L., Casettari, L., & Awad, G. A. S. (2018). A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route. Pharmaceutics, 10(4), 217.
  • Ghosh, A., Kaur, C. D., Gupta, A., & Saraf, S. (2017). Surface engineered lamivudine loaded emulsome for targeting drug delivery to lymphatic system for effective treatment of hiv. International Journal of Applied Pharmaceutical and Biological Research, 2(1), 25–37.
  • Gill, V., Kumar, M. S., Khurana, B., Arora, D., & Mahadevan, N. (2011). Development of Amphotericin B Loaded Modified Emulsomes for Visceral Leishmaniasis: In vitro. International Journal of Recent Advances in Pharmaceutical Research, 2, 14–20.
  • Giri, T. K., Pramanik, K., Barman, T. K., & Maity, S. (2017). Nano-encapsulation of Dietary Phytoconstituent Capsaicin on Emulsome: Evaluation of Anticancer Activity Through the Measurement of Liver Oxidative Stress in Rats. Anti-Cancer Agents in Medicinal Chemistry, 17(12), 1669–1678.
  • Gupta, R., Gupta, M., Mangal, S., Agrawal, U., & Vyas, S. P. (2016). Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artificial Cells, Nanomedicine and Biotechnology, 44(3), 825–834.
  • Gupta, S., Dube, A., & Vyas, S. P. (2007). Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. Journal of Drug Targeting, 15(6), 437–444.
  • Gupta, S., & Vyas, S. P. (2007). Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. Journal of Drug Targeting, 15(3), 206–217.
  • Heiati, H., Tawashi, R., Shivers, R. R., & Phillips, N. C. (1997). Solid lipid nanoparticles as drug carriers I. Incorporation and retention of the lipophilic prodrug 3’-azido-3’-deoxythymidine palmitate. International Journal of Pharmaceutics, 146(1), 123–131.
  • Kommana, N., & Babu, M. K. (2016). Formulation and evaluation of soyalecithin based emulsomes for topical administration of Lornoxicam. Indian Journal of Research in Pharmacy and Biotechnology, 4(1), 28–38.
  • Kretschmar, M., Amselem, S., Zawoznik, E., Mosbach, K., Dietz, A., Hof, H., & Nichterlein, T. (2001). Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses, 44(7–8), 281–286.
  • Li, H. Y., Xiao, Y. Y., Su, Z. G., Chen, X., & Ping, Q. N. (2011). Preparation and in vitro characterization of paclitaxel-loaded cationic nanoemulsomes for intratumoral drug delivery. Chinese Journal of New Drugs, 20(19), 8547–8555.
  • Lowell, G. H., Kaminski, R. W., VanCott, T. C., Slike, B., Kersey, K., Zawoznik, E., Loomis-Price, L., Smith, G., Redfield, R. R., Amselem, S., & Birx, D. L. (1997). Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: Induction of serum, intestinal, vaginal, and lung IgA and IgG. Journal of Infectious Diseases, 175(2), 292–301.
  • Pal, A., Gupta, S., Jaiswal, A., Dube, A., & Vyas, S. P. (2012). Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. Journal of Liposome Research, 22(1), 62–71.
  • Paliwal, R., Paliwal, S. R., Mishra, N., Mehta, A., & Vyas, S. P. (2009). Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. International Journal of Pharmaceutics, 380(1–2), 181–188.
  • Raza, K., Katare, O. P., Setia, A., Bhatia, A., & Singh, B. (2013). Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. Journal of Microencapsulation, 30(3), 225–236.
  • Raza, K., Shareef, M. A., Singal, P., Sharma, G., Negi, P., & Katare, O. P. (2014). Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. Journal of Liposome Research, 24(4), 290–296.
  • Rizk, S. A., Elsheikh, M. A., R Elnaggar, Y. S., & Abdallah, O. Y. (2021). Novel bioemulsomes for baicalin oral lymphatic targeting: development, optimization and pharmacokinetics. Nanomedicine, 16(22), 1983–1998.
  • Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of Physical Science, 25(1), 59–75.
  • Siddiqui, A., Alayoubi, A., El-Malah, Y., & Nazzal, S. (2014). Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharmaceutical Development and Technology, 19(3), 342–346.
  • Ucisik, M. H., Küpcü, S., Breitwieser, A., Gelbmann, N., Schuster, B., & Sleytr, U. B. (2015b). S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting. Colloids and Surfaces B: Biointerfaces, 128, 132–139.
  • Ucisik, M. H., Küpcü, S., Debreczeny, M., Schuster, B., & Sleytr, U. B. (2013a). S-layer coated emulsomes as potential nanocarriers. Small, 9(17), 2895–2904.
  • Ucisik, M. H., Küpcü, S., Schuster, B., & Sleytr, U. B. (2013b). Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. Journal of Nanobiotechnology, 11(1).
  • Ucisik, M., Sleytr, U., & Schuster, B. (2015a). Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System. Current Pharmaceutical Biotechnology, 16(4), 392–405.
  • VanCott, T. C., Kaminski, R. W., Mascola, J. R., Kalyanaraman, V. S., Wassef, N. M., Alving, C. R., Ulrich, J. T., Lowell, G. H., & Birx, D. L. (1998). HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. Journal of Immunology (Baltimore, Md. : 1950), 160(4), 2000–2012. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9469464
  • Vyas, S. P., Subhedar, R., & Jain, S. (2010). Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. Journal of Pharmacy and Pharmacology, 58(3), 321–326. doi: 10.1211/jpp.58.3.0005
  • Wu, H. Y., Maron, R., Tukpah, A.-M., & Weiner, H. L. (2010). Mucosal Anti-CD3 Monoclonal Antibody Attenuates Collagen-Induced Arthritis That Is Associated with Induction of LAP + Regulatory T Cells and Is Enhanced by Administration of an Emulsome-Based Th2-Skewing Adjuvant. The Journal of Immunology, 185(6), 3401–3407. doi: 10.4049/jimmunol.1000836
  • Yilmaz, E. N., Bay, S., Ozturk, G., & Ucisik, M. H. (2020). Neuroprotective effects of curcumin-loaded emulsomes in a laser axotomy-induced cns injury model. International Journal of Nanomedicine, 15, 9211–9229. doi: 10.2147/IJN.S272931

Emülzom Üretimindeki Ekstrüzyon Uygulamasının Sıcaklık Kontrollü Ultrasonikasyon ile Değiştirilmesi

Yıl 2021, Sayı: 28, 584 - 589, 30.11.2021
https://doi.org/10.31590/ejosat.1009437

Öz

Emülzomlar, birden çok fosfolipid katmanı ile çevrili katı bir yağ çekirdeğinden oluşan lipit-bazlı ilaç iletim sistemleridir. Stabilite, uzun süreli salım profili, biyouyumluluk ve lipofilik bileşikler için yüksek yükleme kapasitesi en belirgin özellikleridir. Çalışma, emülzomların üretimi ve homojenizasyonu için yaygın olarak kullanılan ekstrüzyon basamağı yerine sıcaklık kontrollü bir ultrasonikasyon prosedürünün uygunluğunu araştırmaktadır. Bu çalışmada ultrasonikasyon ile homojenize edilen emülzomlar, boyut, morfoloji ve zeta potansiyeli gibi fizikokimyasal özelliklere göre değerlendirilmiştir. Sıcaklık kontrollü ultrasonikasyon yöntemi ile, ortalama olarak 285.6 ± 68.7 nm ve zeta potansiyeli 31.6 ± 9.3 mV olan tripalmitin-bazlı emülzomların üretimi sağlanmıştır. Fosfolipid bileşimindeki heksadesilamin, formülasyona net bir pozitif yüzey yükü kazandırmıştır. Emülzomların morfolojisi taramalı elektron mikroskobu ile incelenmiştir. Ultrasonikasyonun emülzomlara yüklenen lipofilik bileşiklerin miktarını değiştirip değiştirmediğini araştırmak için formülasyona lipofilik bileşik olarak kurkumin ilave edilmiştir. Bu şekilde üretilen emülzomların fizikokimyasal özellikleri ve yükleme kapasitesi, aynı bileşime sahip emülzomların üretimleri sırasında ekstrüzyon yoluyla homojenize edildiği literatürdeki değerlerle karşılaştırılmıştır. Sonuçlar, ultrasonikasyonda sırasında sıcaklık üzerindeki kontrolün, boyut ve zeta potansiyeli açısından yüksek tekrarlanabilirlik ile emülzom üretimine uygulanan metodun önemli bir özelliği olarak katkı sağladığı görülmüştür. Netice itibariyle elde edilen sonuçlar, sıcaklık kontrollü ultrasonikasyon metodolojisinin, emülzom üretimi için kullanılan ekstrüzyon uygulamasının yerini güvenle alabileceğine dair kanıt sunmaktadır.

Proje Numarası

115C022

Kaynakça

  • Alhakamy, N. A., Badr-Eldin, S. M., Ahmed, O. A. A., Asfour, H. Z., Aldawsari, H. M., Algandaby, M. M., Eid, B. G., Abdel-Naim, A. B., Awan, Z. A., & Alghaith, A. F. (2020). Piceatannol-loaded emulsomes exhibit enhanced cytostatic and apoptotic activities in colon cancer cells. Antioxidants, 9(5), 419.
  • Alhakamy, N. A., Badr-Eldin, S. M., Aldawsari, H. M., Alfarsi, A., Neamatallah, T., Okbazghi, S. Z., Fahmy, U. A., Ahmad, O. A. A., Eid, B. G., Mahdi, W. A., Alghaith, A. F., Alshehri, S., & Md, S. (2021). Fluvastatin-Loaded Emulsomes Exhibit Improved Cytotoxic and Apoptosis in Prostate Cancer Cells. AAPS PharmSciTech, 22(5), 1–13.
  • Amselem, S., Yogev, A., Zawoznik, E., & Friedman, D. (1994). Emulsomes, a novel drug delivery technology. Proceedings of the Controlled Release Society, 21(21), 668–669.
  • Amselem, S, & Friedman, D. (1997). Solid fat nanoemulsions. In Solid Fat Nanoemulsions. Google Patents.
  • Amselem, Shimon, Zawoznik, E., Yogev, A., & Friedman, D. (2018). EmulsomesTM, a new type of lipid assembly. In Handbook of Nonmedical Applications of Liposomes: Volume III: From Design to Microreactors (pp. 209–223). CRC Press.
  • Awan, Z. A., Fahmy, U. A., Badr-eldin, S. M., Ibrahim, T. S., Asfour, H. Z., Al-rabia, M. W., Alfarsi, A., Alhakamy, N. A., Abdulaal, W. H., Sadoun, H. Al, Helmi, N., Noor, A. O., Caraci, F., Almasri, D. M., & Caruso, G. (2020). The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells. Pharmaceutics, 12(7), 1–22.
  • Ban, C., Lim, S., Chang, P. S., & Choi, Y. J. (2014). Enhancing the stability of lipid nanoparticle systems by sonication during the cooling step and controlling the liquid oil content. Journal of Agricultural and Food Chemistry, 62(47), 11557–11567.
  • Bolat, Z. B., Islek, Z., Demir, B. N., Yilmaz, E. N., Sahin, F., & Ucisik, M. H. (2020). Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Frontiers in Bioengineering and Biotechnology, 8.
  • El-Zaafarany, G. M., Soliman, M. E., Mansour, S., Cespi, M., Palmieri, G. F., Illum, L., Casettari, L., & Awad, G. A. S. (2018). A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route. Pharmaceutics, 10(4), 217.
  • Ghosh, A., Kaur, C. D., Gupta, A., & Saraf, S. (2017). Surface engineered lamivudine loaded emulsome for targeting drug delivery to lymphatic system for effective treatment of hiv. International Journal of Applied Pharmaceutical and Biological Research, 2(1), 25–37.
  • Gill, V., Kumar, M. S., Khurana, B., Arora, D., & Mahadevan, N. (2011). Development of Amphotericin B Loaded Modified Emulsomes for Visceral Leishmaniasis: In vitro. International Journal of Recent Advances in Pharmaceutical Research, 2, 14–20.
  • Giri, T. K., Pramanik, K., Barman, T. K., & Maity, S. (2017). Nano-encapsulation of Dietary Phytoconstituent Capsaicin on Emulsome: Evaluation of Anticancer Activity Through the Measurement of Liver Oxidative Stress in Rats. Anti-Cancer Agents in Medicinal Chemistry, 17(12), 1669–1678.
  • Gupta, R., Gupta, M., Mangal, S., Agrawal, U., & Vyas, S. P. (2016). Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artificial Cells, Nanomedicine and Biotechnology, 44(3), 825–834.
  • Gupta, S., Dube, A., & Vyas, S. P. (2007). Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. Journal of Drug Targeting, 15(6), 437–444.
  • Gupta, S., & Vyas, S. P. (2007). Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. Journal of Drug Targeting, 15(3), 206–217.
  • Heiati, H., Tawashi, R., Shivers, R. R., & Phillips, N. C. (1997). Solid lipid nanoparticles as drug carriers I. Incorporation and retention of the lipophilic prodrug 3’-azido-3’-deoxythymidine palmitate. International Journal of Pharmaceutics, 146(1), 123–131.
  • Kommana, N., & Babu, M. K. (2016). Formulation and evaluation of soyalecithin based emulsomes for topical administration of Lornoxicam. Indian Journal of Research in Pharmacy and Biotechnology, 4(1), 28–38.
  • Kretschmar, M., Amselem, S., Zawoznik, E., Mosbach, K., Dietz, A., Hof, H., & Nichterlein, T. (2001). Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses, 44(7–8), 281–286.
  • Li, H. Y., Xiao, Y. Y., Su, Z. G., Chen, X., & Ping, Q. N. (2011). Preparation and in vitro characterization of paclitaxel-loaded cationic nanoemulsomes for intratumoral drug delivery. Chinese Journal of New Drugs, 20(19), 8547–8555.
  • Lowell, G. H., Kaminski, R. W., VanCott, T. C., Slike, B., Kersey, K., Zawoznik, E., Loomis-Price, L., Smith, G., Redfield, R. R., Amselem, S., & Birx, D. L. (1997). Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: Induction of serum, intestinal, vaginal, and lung IgA and IgG. Journal of Infectious Diseases, 175(2), 292–301.
  • Pal, A., Gupta, S., Jaiswal, A., Dube, A., & Vyas, S. P. (2012). Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. Journal of Liposome Research, 22(1), 62–71.
  • Paliwal, R., Paliwal, S. R., Mishra, N., Mehta, A., & Vyas, S. P. (2009). Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. International Journal of Pharmaceutics, 380(1–2), 181–188.
  • Raza, K., Katare, O. P., Setia, A., Bhatia, A., & Singh, B. (2013). Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. Journal of Microencapsulation, 30(3), 225–236.
  • Raza, K., Shareef, M. A., Singal, P., Sharma, G., Negi, P., & Katare, O. P. (2014). Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. Journal of Liposome Research, 24(4), 290–296.
  • Rizk, S. A., Elsheikh, M. A., R Elnaggar, Y. S., & Abdallah, O. Y. (2021). Novel bioemulsomes for baicalin oral lymphatic targeting: development, optimization and pharmacokinetics. Nanomedicine, 16(22), 1983–1998.
  • Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of Physical Science, 25(1), 59–75.
  • Siddiqui, A., Alayoubi, A., El-Malah, Y., & Nazzal, S. (2014). Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharmaceutical Development and Technology, 19(3), 342–346.
  • Ucisik, M. H., Küpcü, S., Breitwieser, A., Gelbmann, N., Schuster, B., & Sleytr, U. B. (2015b). S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting. Colloids and Surfaces B: Biointerfaces, 128, 132–139.
  • Ucisik, M. H., Küpcü, S., Debreczeny, M., Schuster, B., & Sleytr, U. B. (2013a). S-layer coated emulsomes as potential nanocarriers. Small, 9(17), 2895–2904.
  • Ucisik, M. H., Küpcü, S., Schuster, B., & Sleytr, U. B. (2013b). Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. Journal of Nanobiotechnology, 11(1).
  • Ucisik, M., Sleytr, U., & Schuster, B. (2015a). Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System. Current Pharmaceutical Biotechnology, 16(4), 392–405.
  • VanCott, T. C., Kaminski, R. W., Mascola, J. R., Kalyanaraman, V. S., Wassef, N. M., Alving, C. R., Ulrich, J. T., Lowell, G. H., & Birx, D. L. (1998). HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. Journal of Immunology (Baltimore, Md. : 1950), 160(4), 2000–2012. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9469464
  • Vyas, S. P., Subhedar, R., & Jain, S. (2010). Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. Journal of Pharmacy and Pharmacology, 58(3), 321–326. doi: 10.1211/jpp.58.3.0005
  • Wu, H. Y., Maron, R., Tukpah, A.-M., & Weiner, H. L. (2010). Mucosal Anti-CD3 Monoclonal Antibody Attenuates Collagen-Induced Arthritis That Is Associated with Induction of LAP + Regulatory T Cells and Is Enhanced by Administration of an Emulsome-Based Th2-Skewing Adjuvant. The Journal of Immunology, 185(6), 3401–3407. doi: 10.4049/jimmunol.1000836
  • Yilmaz, E. N., Bay, S., Ozturk, G., & Ucisik, M. H. (2020). Neuroprotective effects of curcumin-loaded emulsomes in a laser axotomy-induced cns injury model. International Journal of Nanomedicine, 15, 9211–9229. doi: 10.2147/IJN.S272931
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Hikmet Üçışık 0000-0001-9434-3861

Proje Numarası 115C022
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Üçışık, M. H. (2021). Replacement of Extrusion by Temperature-Controlled Ultrasonication in Emulsome Production. Avrupa Bilim Ve Teknoloji Dergisi(28), 584-589. https://doi.org/10.31590/ejosat.1009437