Derleme
BibTex RIS Kaynak Göster

Taşkın Modelleme Yöntemlerinin Gözden Geçirilmesi ve Karşılaştırılması

Yıl 2021, Sayı: 28, 1013 - 1021, 30.11.2021
https://doi.org/10.31590/ejosat.1010220

Öz

Bu çalışmada, global anlamda en büyük felaketlerden biri olan taşkınların analiz edilmesinde kullanılan son teknoloji deneysel, hidrodinamik ve basit kavramsal modeller karşılaştırılmaktadır. Çalışmada taşkın modellemesinde yaşanan en son gelişmeler vurgulanarak, mevcut modellerin avantajları ve dezavantajları ortaya konulmaktadır. Modelleme konusundaki belirsizliklerin analiz edilmesinde kullanılabilecek çeşitli yaklaşımlar ve ele alınış biçimleri irdelenmiştir. Çalışmanın amacı, bu konu üzerine yapılacak çalışmalar için su kaynaklarının yönetimi üzerine çalışan bilim insanlarına, acil durum müdahale kuruluşlarına, sigorta şirketlerine ve diğer karar vericilere konu ile ilgili en son bilgileri vermek ve taşkınlarla ilgili pratik sorunların çözümü için en uygun yöntemin ya da modelin seçilmesinde rehberlik etmektir. Çalışma ile modelleme amacına ve modelleme sonucunda elde edilmek istenen spesifik çıktılara göre, ihtiyaç duyulacak veriler ve analiz yöntemleri anlatılmıştır.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986). An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 87(1–2), 61–77. https://doi.org/10.1016/0022-1694(86)90115-0
  • Alcrudo, F. (2004). A State of the Art Review on Mathematical Modelling of Flood Propagation, IMPACT Project.
  • Apel, H., Thieken, A. H., Merz, B., & Blöschl, G. (2006). A probabilistic modelling system for assessing flood risks. Natural Hazards, 38(1–2), 79–100. https://doi.org/10.1007/s11069-005-8603-7
  • Arduino, G., Reggiani, P., & Todini, E. (2005). Recent advances in flood forecasting and flood risk assessment. Hydrology and Earth System Sciences, 9(4), 280–284. https://doi.org/10.5194/hess-9-280-2005
  • Baker, W. H., Addams, H. L., & Davis, B. (2005). Critical Factors for Enhancing Municipal Public Hearings. Public Administration Review, 65(4), 490–499. https://doi.org/10.1111/j.1540-6210.2005.00474.x
  • Bates, P. ., & De Roo, A. P. . (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1–2), 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X
  • Bates, P. D., Horritt, M. S., Smith, C. N., & Mason, D. (1997). Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrological Processes, 11(14), 1777–1795. https://doi.org/10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E
  • Beden, N. (2019). Cevizdere havzasının sayısal modelleme sistemlerine dayalı taşkın analizi ve taşkın zararlarının değerlendirilmesi. O.M.Ü. Fen Bilimleri Enstitüsü.
  • Beven, K. (1989). Changing ideas in hydrology — The case of physically-based models. Journal of Hydrology, 105(1–2), 157–172. https://doi.org/10.1016/0022-1694(89)90101-7
  • Bhuiyan, M. J. A. N., & Dutta, D. (2012). Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Natural Hazards, 61(2), 729–743. https://doi.org/10.1007/s11069-011-0059-3
  • Brunner, G. W. (2016). HEC-RAS River Analysis System, 2D Modeling User’s Manual Version 5.0, (CPD-68A), 1–171. Retrieved from www.hec.usace.army.mil
  • Casulli, V., & Stelling, G. S. (1998). Numerical Simulation of 3D Quasi-Hydrostatic, Free-Surface Flows. Journal of Hydraulic Engineering, 124(7), 678–686. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
  • Cesur, D. (2007). GIS as an information technology framework for water modeling. Journal of Hydroinformatics, 9(2), 123–134. https://doi.org/10.2166/hydro.2007.008
  • Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. Boston: Pitman Advanced Publishing.
  • Cunge, J. A., & Wegner, M. (1964). Intégration numérique des équations d’écoulement de barré de Saint-Venant par un schéma implicite de différences finies. La Houille Blanche, 50(1), 33–39. https://doi.org/10.1051/lhb/1964002
  • de Saint-Venant, B. Saint-Venant, A.J.C. SAINT-VENANT, DE BARRÉ, AJC Saint-Venant, D. Barre, J. Saint-Cyr, Venant de Saint, A.J.C. SAINT-VENANT, J. S.-C. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction de marées dans leurs lits.
  • Demir, V., & Ülke Keskin, A. (2020). Obtaining the Manning Roughness with Terrestrial-Remote Sensing Technique and Flood Modeling using FLO-2D, a case study Samsun from Turkey. Geofizika. https://doi.org/doi.org/10.15233/gfz.2020.37.9
  • Demir, Vahdettin, & Ülke Keskin, A. (2021). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7(2), 149–162. https://doi.org/10.29128/geomatik.918502
  • DHI. (2016a). DHI (Danish Hydraulic Institute) MIKE11 a modelling system for rivers and channels Reference manual.
  • DHI. (2016b). DHI (Danish Hydraulic Institute) MIKE21 flow model FM User Guide.
  • Dutta, D., Herath, S., & Musiake, K. (2006). An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin. Hydrological Processes, 20(6), 1365–1384. https://doi.org/10.1002/hyp.6092
  • Dutta, D., Teng, J., Vaze, J., Lerat, J., Hughes, J., & Marvanek, S. (2013). Storage-based approaches to build floodplain inundation modelling capability in river system models for water resources planning and accounting. Journal of Hydrology, 504, 12–28. https://doi.org/10.1016/j.jhydrol.2013.09.033
  • Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K., Faizollahzadeh Ardabili, S., & Piran, M. J. (2018). Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 12(1), 411–437. https://doi.org/10.1080/19942060.2018.1448896
  • Gallegos, H. A., Schubert, J. E., & Sanders, B. F. (2009). Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32(8), 1323–1335. https://doi.org/10.1016/j.advwatres.2009.05.008
  • Huthoff, F., Remo, J. W. F., & Pinter, N. (2015). Improving flood preparedness using hydrodynamic levee-breach and inundation modelling: Middle Mississippi River, USA. Journal of Flood Risk Management, 8(1), 2–18. https://doi.org/10.1111/jfr3.12066
  • Isaacson, E., Stoker, J. J., & Troesch, A. (1958). Numerical Solution of Flow Problems in Rivers. Journal of the Hydraulics Division, 84(5), 1–18. https://doi.org/10.1061/JYCEAJ.0000220
  • Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software, 21(5), 602–614. https://doi.org/10.1016/j.envsoft.2006.01.004
  • Kalinina, A., Spada, M., Vetsch, D. F., Marelli, S., Whealton, C., Burgherr, P., & Sudret, B. (2020). Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks. Energies, 13(14), 3685. https://doi.org/10.3390/en13143685
  • Karim, F., Dutta, D., Marvanek, S., Petheram, C., Ticehurst, C., Lerat, J., … Yang, A. (2015). Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet–dry tropics of northern Australia. Journal of Hydrology, 522, 80–94. https://doi.org/10.1016/j.jhydrol.2014.12.005
  • Katopodes, N. D., & Strelkoff, T. (1978). Computing Two-Dimensional Dam-Break Flood Waves. Journal of the Hydraulics Division, 104(9), 1269–1288. https://doi.org/10.1061/JYCEAJ.0005062
  • Lhomme, J., Sayers, P., Gouldby, B., Wills, M., & Mulet-Marti, J. (2008). Recent development and application of a rapid flood spreading method. Flood Risk Management: Research and Practice, (October), 15–24. https://doi.org/10.1201/9780203883020.ch2
  • Mahmood, K., Yevjevich, V. M., & Miller, W. A. (1975). Unsteady flow in open channels. Fort Collins, Colo. : Water Resources Publications, 1975. https://doi.org/https://www.vgls.vic.gov.au/client/en_AU/VGLS-public/search/detailnonmodal?qu=Channels+%28Hydraulic+engineering%29&d=ent%3A%2F%2FSD_ILS%2F0%2FSD_ILS%3A82999%7EILS%7E0&ic=true&ps=300
  • Marriott, S. (1992). Textural analysis and modelling of a flood deposit: River severn, U.K. Earth Surface Processes and Landforms, 17(7), 687–697. https://doi.org/10.1002/esp.3290170705
  • Martin, C. S., & DeFazio, F. G. (1969). Open-Channel Surge Simulation By Digital Computer. Journal of the Hydraulics Division, 95(6), 2049–2070. https://doi.org/10.1061/JYCEAJ.0002204
  • Martin, C. S., & Zovne, J. J. (1971). Finite-Difference Simulation of Bore Propagation. Journal of the Hydraulics Division, 97(7), 993–1010. https://doi.org/10.1061/JYCEAJ.0003043
  • Martinis, S., Twele, A., & Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards and Earth System Sciences, 9(2), 303–314. https://doi.org/10.5194/nhess-9-303-2009
  • Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., & Savenije, H. H. G. (2011). Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, 36(7–8), 241–252. https://doi.org/10.1016/J.PCE.2010.12.009
  • Merz, B., Kreibich, H., Schwarze, R., & Thieken, A. (2010). Review article “assessment of economic flood damage.” Natural Hazards and Earth System Science, 10(8), 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010
  • Merz, Bruno, & Thieken, A. H. (2005). Separating natural and epistemic uncertainty in flood frequency analysis. Journal of Hydrology, 309(1–4), 114–132. https://doi.org/10.1016/j.jhydrol.2004.11.015
  • Mokhtari, F., Soltani, S., & Mousavi, S. A. (2017). Assessment of Flood Damage on Humans, Infrastructure, and Agriculture in the Ghamsar Watershed Using HEC-FIA Software . Natural Hazards Review, 18(3), 04017006. https://doi.org/10.1061/(asce)nh.1527-6996.0000248
  • Monaghan, J. J. (1994). Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110(2), 399–406. https://doi.org/10.1006/jcph.1994.1034
  • Moulinec, C., Denis, C., Pham, C.-T., Rougé, D., Hervouet, J.-M., Razafindrakoto, E., … Gu, X.-J. (2011). TELEMAC: An efficient hydrodynamics suite for massively parallel architectures. Computers & Fluids, 51(1), 30–34. https://doi.org/10.1016/j.compfluid.2011.07.003
  • Mure-Ravaud, M., Binet, G., Bracq, M., Perarnaud, J. J., Fradin, A., & Litrico, X. (2016). A web based tool for operational real-time flood forecasting using data assimilation to update hydraulic states. Environmental Modelling and Software, 84, 35–49. https://doi.org/10.1016/J.ENVSOFT.2016.06.002
  • Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic modelling packages.
  • O’CONNOR, J. E., & BAKER, V. R. (1992). Magnitudes and implications of peak discharges from glacial Lake Missoula. Geological Society of America Bulletin, 104(3), 267–279. https://doi.org/10.1130/0016-7606(1992)104<0267:MAIOPD>2.3.CO;2
  • Pender, G. (2006). Briefing: Introducing the Flood Risk Management Research Consortium. Proceedings of the Institution of Civil Engineers - Water Management, 159(1), 3–8. https://doi.org/10.1680/wama.2006.159.1.3 PIZZUTO, J. E. (1987). Sediment diffusion during overbank flows. Sedimentology, 34(2), 301–317. https://doi.org/10.1111/j.1365-3091.1987.tb00779.x
  • Prakash, M., Rothauge, K., & Cleary, P. W. (2014). Modelling the impact of dam failure scenarios on flood inundation using SPH. Applied Mathematical Modelling, 38(23), 5515–5534. https://doi.org/10.1016/j.apm.2014.03.011
  • Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., & Ferrazzoli, P. (2011). Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sensing of Environment, 115(4), 990–1002. https://doi.org/10.1016/j.rse.2010.12.002
  • René, J.-R., Djordjević, S., Butler, D., Mark, O., Henonin, J., Eisum, N., & Madsen, H. (2015). A real-time pluvial flood forecasting system for Castries, St. Lucia. Journal of Flood Risk Management, 11, S269–S283. https://doi.org/10.1111/jfr3.12205
  • Roberts, S., Nielsen, O., Gray, D., & Sexton, J. (2015). ANUGA User Manual, (May), jg. https://doi.org/10.13140/RG.2.2.12401.99686
  • Sanyal, J., & Lu, X. X. (2004). Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards 2004 33:2, 33(2), 283–301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95
  • Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009). Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Reviews of Geophysics, 47(4). https://doi.org/10.1029/2008RG000274
  • Schumann, G. J.-P., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009). Progress in integration of remote sensing derived flood extent and stage data and hydraulic models. Reviews of Geophysics, 47.
  • Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological Processes, 11(10), 1427–1439. https://doi.org/10.1002/(sici)1099-1085(199708)11:10<1427::aid-hyp473>3.0.co;2-s
  • Stelling, G. S., & Verwey, A. (2005). Numerical Flood Simulation. In Encyclopedia of Hydrological Sciences. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa025a
  • Stephens, E. M., Bates, P. D., Freer, J. E., & Mason, D. C. (2012). The impact of uncertainty in satellite data on the assessment of flood inundation models. Journal of Hydrology, 414–415, 162–173. https://doi.org/10.1016/J.JHYDROL.2011.10.040
  • Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006
  • Teng, J., Vaze, J., Dutta, D., & Marvanek, S. (2015). Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM. Water Resources Management, 29(8), 2619–2636. https://doi.org/10.1007/S11269-015-0960-8
  • Ticehurst, C., Dutta, D., Karim, F., Petheram, C., & Guerschman, J. P. (2015). Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling. Natural Hazards, 78(2), 803–820. https://doi.org/10.1007/S11069-015-1743-5
  • Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2012). SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation. Journal of Hydraulic Engineering, 138(6), 530–541. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543
  • Vojtek, M., & Vojteková, J. (2016). Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomatics, Natural Hazards and Risk, 7(6), 1973–1992. https://doi.org/10.1080/19475705.2016.1166874
  • Ye, J., & McCorquodale, J. (1998). Simulation of Curved Open Channel Flows by 3D Hydrodynamic Model. Journal of Hydraulic Engineering, 124, 687–698.
  • Zerger, A., & Wealands, S. (2004). Beyond Modelling: Linking Models with GIS for Flood Risk Management. Natural Hazards, 33(2), 191–208. https://doi.org/10.1023/B:NHAZ.0000037040.72866.92
  • Zhang, N., Song, D., Zhang, J., Liao, W., Miao, K., Zhong, S., … Huang, C. (2019). The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: An interrupted time-series study. Environment International, 127, 801–809. https://doi.org/10.1016/j.envint.2019.03.063

Review and Comparison of Flood Modeling Methods

Yıl 2021, Sayı: 28, 1013 - 1021, 30.11.2021
https://doi.org/10.31590/ejosat.1010220

Öz

In this study, the latest technology experimental, hydrodynamic and simple conceptual models used to analyze floods, one of the greatest disasters globally, are compared. In this study, the latest developments in flood modeling are emphasized and the advantages and disadvantages of the existing models are presented. Various approaches and ways of analyzing the uncertainties about modeling are discussed. The aim of the study is to give the latest information on the subject to the scientists, emergency response organizations, insurance companies and other decision makers working on water resource management for the studies on this subject and to guide the selection of the most appropriate method or model for solving practical problems related to floods. it is to. According to the aim of modeling and modeling, the data and analysis methods will be needed.

Proje Numarası

Yok

Kaynakça

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986). An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 87(1–2), 61–77. https://doi.org/10.1016/0022-1694(86)90115-0
  • Alcrudo, F. (2004). A State of the Art Review on Mathematical Modelling of Flood Propagation, IMPACT Project.
  • Apel, H., Thieken, A. H., Merz, B., & Blöschl, G. (2006). A probabilistic modelling system for assessing flood risks. Natural Hazards, 38(1–2), 79–100. https://doi.org/10.1007/s11069-005-8603-7
  • Arduino, G., Reggiani, P., & Todini, E. (2005). Recent advances in flood forecasting and flood risk assessment. Hydrology and Earth System Sciences, 9(4), 280–284. https://doi.org/10.5194/hess-9-280-2005
  • Baker, W. H., Addams, H. L., & Davis, B. (2005). Critical Factors for Enhancing Municipal Public Hearings. Public Administration Review, 65(4), 490–499. https://doi.org/10.1111/j.1540-6210.2005.00474.x
  • Bates, P. ., & De Roo, A. P. . (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1–2), 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X
  • Bates, P. D., Horritt, M. S., Smith, C. N., & Mason, D. (1997). Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrological Processes, 11(14), 1777–1795. https://doi.org/10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E
  • Beden, N. (2019). Cevizdere havzasının sayısal modelleme sistemlerine dayalı taşkın analizi ve taşkın zararlarının değerlendirilmesi. O.M.Ü. Fen Bilimleri Enstitüsü.
  • Beven, K. (1989). Changing ideas in hydrology — The case of physically-based models. Journal of Hydrology, 105(1–2), 157–172. https://doi.org/10.1016/0022-1694(89)90101-7
  • Bhuiyan, M. J. A. N., & Dutta, D. (2012). Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Natural Hazards, 61(2), 729–743. https://doi.org/10.1007/s11069-011-0059-3
  • Brunner, G. W. (2016). HEC-RAS River Analysis System, 2D Modeling User’s Manual Version 5.0, (CPD-68A), 1–171. Retrieved from www.hec.usace.army.mil
  • Casulli, V., & Stelling, G. S. (1998). Numerical Simulation of 3D Quasi-Hydrostatic, Free-Surface Flows. Journal of Hydraulic Engineering, 124(7), 678–686. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
  • Cesur, D. (2007). GIS as an information technology framework for water modeling. Journal of Hydroinformatics, 9(2), 123–134. https://doi.org/10.2166/hydro.2007.008
  • Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. Boston: Pitman Advanced Publishing.
  • Cunge, J. A., & Wegner, M. (1964). Intégration numérique des équations d’écoulement de barré de Saint-Venant par un schéma implicite de différences finies. La Houille Blanche, 50(1), 33–39. https://doi.org/10.1051/lhb/1964002
  • de Saint-Venant, B. Saint-Venant, A.J.C. SAINT-VENANT, DE BARRÉ, AJC Saint-Venant, D. Barre, J. Saint-Cyr, Venant de Saint, A.J.C. SAINT-VENANT, J. S.-C. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction de marées dans leurs lits.
  • Demir, V., & Ülke Keskin, A. (2020). Obtaining the Manning Roughness with Terrestrial-Remote Sensing Technique and Flood Modeling using FLO-2D, a case study Samsun from Turkey. Geofizika. https://doi.org/doi.org/10.15233/gfz.2020.37.9
  • Demir, Vahdettin, & Ülke Keskin, A. (2021). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7(2), 149–162. https://doi.org/10.29128/geomatik.918502
  • DHI. (2016a). DHI (Danish Hydraulic Institute) MIKE11 a modelling system for rivers and channels Reference manual.
  • DHI. (2016b). DHI (Danish Hydraulic Institute) MIKE21 flow model FM User Guide.
  • Dutta, D., Herath, S., & Musiake, K. (2006). An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin. Hydrological Processes, 20(6), 1365–1384. https://doi.org/10.1002/hyp.6092
  • Dutta, D., Teng, J., Vaze, J., Lerat, J., Hughes, J., & Marvanek, S. (2013). Storage-based approaches to build floodplain inundation modelling capability in river system models for water resources planning and accounting. Journal of Hydrology, 504, 12–28. https://doi.org/10.1016/j.jhydrol.2013.09.033
  • Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K., Faizollahzadeh Ardabili, S., & Piran, M. J. (2018). Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 12(1), 411–437. https://doi.org/10.1080/19942060.2018.1448896
  • Gallegos, H. A., Schubert, J. E., & Sanders, B. F. (2009). Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32(8), 1323–1335. https://doi.org/10.1016/j.advwatres.2009.05.008
  • Huthoff, F., Remo, J. W. F., & Pinter, N. (2015). Improving flood preparedness using hydrodynamic levee-breach and inundation modelling: Middle Mississippi River, USA. Journal of Flood Risk Management, 8(1), 2–18. https://doi.org/10.1111/jfr3.12066
  • Isaacson, E., Stoker, J. J., & Troesch, A. (1958). Numerical Solution of Flow Problems in Rivers. Journal of the Hydraulics Division, 84(5), 1–18. https://doi.org/10.1061/JYCEAJ.0000220
  • Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software, 21(5), 602–614. https://doi.org/10.1016/j.envsoft.2006.01.004
  • Kalinina, A., Spada, M., Vetsch, D. F., Marelli, S., Whealton, C., Burgherr, P., & Sudret, B. (2020). Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks. Energies, 13(14), 3685. https://doi.org/10.3390/en13143685
  • Karim, F., Dutta, D., Marvanek, S., Petheram, C., Ticehurst, C., Lerat, J., … Yang, A. (2015). Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet–dry tropics of northern Australia. Journal of Hydrology, 522, 80–94. https://doi.org/10.1016/j.jhydrol.2014.12.005
  • Katopodes, N. D., & Strelkoff, T. (1978). Computing Two-Dimensional Dam-Break Flood Waves. Journal of the Hydraulics Division, 104(9), 1269–1288. https://doi.org/10.1061/JYCEAJ.0005062
  • Lhomme, J., Sayers, P., Gouldby, B., Wills, M., & Mulet-Marti, J. (2008). Recent development and application of a rapid flood spreading method. Flood Risk Management: Research and Practice, (October), 15–24. https://doi.org/10.1201/9780203883020.ch2
  • Mahmood, K., Yevjevich, V. M., & Miller, W. A. (1975). Unsteady flow in open channels. Fort Collins, Colo. : Water Resources Publications, 1975. https://doi.org/https://www.vgls.vic.gov.au/client/en_AU/VGLS-public/search/detailnonmodal?qu=Channels+%28Hydraulic+engineering%29&d=ent%3A%2F%2FSD_ILS%2F0%2FSD_ILS%3A82999%7EILS%7E0&ic=true&ps=300
  • Marriott, S. (1992). Textural analysis and modelling of a flood deposit: River severn, U.K. Earth Surface Processes and Landforms, 17(7), 687–697. https://doi.org/10.1002/esp.3290170705
  • Martin, C. S., & DeFazio, F. G. (1969). Open-Channel Surge Simulation By Digital Computer. Journal of the Hydraulics Division, 95(6), 2049–2070. https://doi.org/10.1061/JYCEAJ.0002204
  • Martin, C. S., & Zovne, J. J. (1971). Finite-Difference Simulation of Bore Propagation. Journal of the Hydraulics Division, 97(7), 993–1010. https://doi.org/10.1061/JYCEAJ.0003043
  • Martinis, S., Twele, A., & Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards and Earth System Sciences, 9(2), 303–314. https://doi.org/10.5194/nhess-9-303-2009
  • Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., & Savenije, H. H. G. (2011). Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, 36(7–8), 241–252. https://doi.org/10.1016/J.PCE.2010.12.009
  • Merz, B., Kreibich, H., Schwarze, R., & Thieken, A. (2010). Review article “assessment of economic flood damage.” Natural Hazards and Earth System Science, 10(8), 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010
  • Merz, Bruno, & Thieken, A. H. (2005). Separating natural and epistemic uncertainty in flood frequency analysis. Journal of Hydrology, 309(1–4), 114–132. https://doi.org/10.1016/j.jhydrol.2004.11.015
  • Mokhtari, F., Soltani, S., & Mousavi, S. A. (2017). Assessment of Flood Damage on Humans, Infrastructure, and Agriculture in the Ghamsar Watershed Using HEC-FIA Software . Natural Hazards Review, 18(3), 04017006. https://doi.org/10.1061/(asce)nh.1527-6996.0000248
  • Monaghan, J. J. (1994). Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110(2), 399–406. https://doi.org/10.1006/jcph.1994.1034
  • Moulinec, C., Denis, C., Pham, C.-T., Rougé, D., Hervouet, J.-M., Razafindrakoto, E., … Gu, X.-J. (2011). TELEMAC: An efficient hydrodynamics suite for massively parallel architectures. Computers & Fluids, 51(1), 30–34. https://doi.org/10.1016/j.compfluid.2011.07.003
  • Mure-Ravaud, M., Binet, G., Bracq, M., Perarnaud, J. J., Fradin, A., & Litrico, X. (2016). A web based tool for operational real-time flood forecasting using data assimilation to update hydraulic states. Environmental Modelling and Software, 84, 35–49. https://doi.org/10.1016/J.ENVSOFT.2016.06.002
  • Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic modelling packages.
  • O’CONNOR, J. E., & BAKER, V. R. (1992). Magnitudes and implications of peak discharges from glacial Lake Missoula. Geological Society of America Bulletin, 104(3), 267–279. https://doi.org/10.1130/0016-7606(1992)104<0267:MAIOPD>2.3.CO;2
  • Pender, G. (2006). Briefing: Introducing the Flood Risk Management Research Consortium. Proceedings of the Institution of Civil Engineers - Water Management, 159(1), 3–8. https://doi.org/10.1680/wama.2006.159.1.3 PIZZUTO, J. E. (1987). Sediment diffusion during overbank flows. Sedimentology, 34(2), 301–317. https://doi.org/10.1111/j.1365-3091.1987.tb00779.x
  • Prakash, M., Rothauge, K., & Cleary, P. W. (2014). Modelling the impact of dam failure scenarios on flood inundation using SPH. Applied Mathematical Modelling, 38(23), 5515–5534. https://doi.org/10.1016/j.apm.2014.03.011
  • Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., & Ferrazzoli, P. (2011). Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sensing of Environment, 115(4), 990–1002. https://doi.org/10.1016/j.rse.2010.12.002
  • René, J.-R., Djordjević, S., Butler, D., Mark, O., Henonin, J., Eisum, N., & Madsen, H. (2015). A real-time pluvial flood forecasting system for Castries, St. Lucia. Journal of Flood Risk Management, 11, S269–S283. https://doi.org/10.1111/jfr3.12205
  • Roberts, S., Nielsen, O., Gray, D., & Sexton, J. (2015). ANUGA User Manual, (May), jg. https://doi.org/10.13140/RG.2.2.12401.99686
  • Sanyal, J., & Lu, X. X. (2004). Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards 2004 33:2, 33(2), 283–301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95
  • Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009). Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Reviews of Geophysics, 47(4). https://doi.org/10.1029/2008RG000274
  • Schumann, G. J.-P., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009). Progress in integration of remote sensing derived flood extent and stage data and hydraulic models. Reviews of Geophysics, 47.
  • Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological Processes, 11(10), 1427–1439. https://doi.org/10.1002/(sici)1099-1085(199708)11:10<1427::aid-hyp473>3.0.co;2-s
  • Stelling, G. S., & Verwey, A. (2005). Numerical Flood Simulation. In Encyclopedia of Hydrological Sciences. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa025a
  • Stephens, E. M., Bates, P. D., Freer, J. E., & Mason, D. C. (2012). The impact of uncertainty in satellite data on the assessment of flood inundation models. Journal of Hydrology, 414–415, 162–173. https://doi.org/10.1016/J.JHYDROL.2011.10.040
  • Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006
  • Teng, J., Vaze, J., Dutta, D., & Marvanek, S. (2015). Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM. Water Resources Management, 29(8), 2619–2636. https://doi.org/10.1007/S11269-015-0960-8
  • Ticehurst, C., Dutta, D., Karim, F., Petheram, C., & Guerschman, J. P. (2015). Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling. Natural Hazards, 78(2), 803–820. https://doi.org/10.1007/S11069-015-1743-5
  • Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2012). SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation. Journal of Hydraulic Engineering, 138(6), 530–541. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543
  • Vojtek, M., & Vojteková, J. (2016). Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomatics, Natural Hazards and Risk, 7(6), 1973–1992. https://doi.org/10.1080/19475705.2016.1166874
  • Ye, J., & McCorquodale, J. (1998). Simulation of Curved Open Channel Flows by 3D Hydrodynamic Model. Journal of Hydraulic Engineering, 124, 687–698.
  • Zerger, A., & Wealands, S. (2004). Beyond Modelling: Linking Models with GIS for Flood Risk Management. Natural Hazards, 33(2), 191–208. https://doi.org/10.1023/B:NHAZ.0000037040.72866.92
  • Zhang, N., Song, D., Zhang, J., Liao, W., Miao, K., Zhong, S., … Huang, C. (2019). The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: An interrupted time-series study. Environment International, 127, 801–809. https://doi.org/10.1016/j.envint.2019.03.063
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Vahdettin Demir 0000-0002-6590-5658

Neslihan Beden 0000-0002-5573-8016

Aslı Ülke Keskin 0000-0002-9676-8377

Proje Numarası Yok
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Demir, V., Beden, N., & Ülke Keskin, A. (2021). Taşkın Modelleme Yöntemlerinin Gözden Geçirilmesi ve Karşılaştırılması. Avrupa Bilim Ve Teknoloji Dergisi(28), 1013-1021. https://doi.org/10.31590/ejosat.1010220