Araştırma Makalesi
BibTex RIS Kaynak Göster

Otonom bir PV Sistemindeki Kurşun Asitli Piller için Solar Şarj Cihazı

Yıl 2021, Sayı: 28, 717 - 721, 30.11.2021
https://doi.org/10.31590/ejosat.1010771

Öz

Fotovoltaik enerji, güneş battığında kesildiğinden kesintili bir enerji kaynağıdır. Bu nedenle piller, otonom sistem için sürekli enerji kaynakları elde etmede hayati bir role sahiptir. Pil, sistemin maliyetini büyük ölçüde etkiler. Ayrıca pillerin kullanım ömrü tüketiciler için yeterli olamamaktadır. Bu noktada şarj algoritması çok önemlidir çünkü pili, pilin ömrünün geri dönüşümünü ve tüm sistemin geri dönüş maliyetini korur. Bu çalışmada, verimli bir otonom fotovoltaik sistem elde etmek için bir pil şarj cihazı tasarlanmıştır. Fotovoltaik sistem iki paralel panel, bir DC-DC dönüştürücü ve iki seri pil olarak tasarlanmıştır. Maliyeti daha düşük olduğu için kurşun asitli piller kullanılmaktadır. Kurşun-asit akü, yığın, emilim ve yüzer bölgeler gibi üç şarj bölgesine sahiptir. Bu çalışmada, yığın bölgesi, sistemin verimliliği noktasında daha kritik olduğundan farklı ışınlama seviyeleri için incelenmiştir. Şarj algoritması, mevcut ışınlama seviyesini göz önünde bulundurarak dönüştürücünün görev döngüsünü değiştirir. Fotovoltaik şarj cihazı, ilgili pil/piller için hem maksimum gücü hem de doğru şarj işlemini sağlamalıdır. Klasik değiştir ve gözle algoritması, maksimum güç etrafındaki salınım ve ışınım değişikliğinde yanlış kontrol kuralı uygulama gibi dezavantajları ortadan kaldırmak için modifiye edilmiştir. Geliştirilmiş değiştir ve gözle algoritması bir fotovoltaik şarj cihazı olarak kullanılmıştır ve simülasyon sonuçları önerilen yöntemin üstünlüklerini ortaya koymaktadır.

Kaynakça

  • Abu Eldahab, Y. E., Saad, N. H., & Zekry, A. (2014). Enhancing the maximum power point tracking techniques for photovoltaic systems. Renewable and Sustainable Energy Reviews, 40, 505–514.
  • Belkaid, A., Colak, I., & Isik, O. (2016). Photovoltaic maximum power point tracking under fast varying of solar radiation. Applied Energy, 179, 523–530.
  • Chuang, Y. C. (2010). High-Efficiency ZCS Buck Converter for Rechargeable Batteries. IEEE Transactions on Industrial Electronics, 57(7), 2463–2472.
  • Delihasanlar, E., Yaylacı, E. K., & Dalcalı, A. (2019). Dünyada ve Türkiye’de Güneş Enerjisi Potansiyeli, Mevcut Durumu, Teşvikleri, Kurulum Maliyeti Analizi-Karabük İli Örneği. Electronic Letters on Science & Engineering, 15(1), 12–20.
  • Hua, A. C. C., & Syue, B. Z. W. (2010). Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. International Power Electronics Conference, 95, 1478–1483.
  • Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters (Second edi). John Wiley & Sons, Ltd.
  • Koutroulis, E., & Kalaitzakis, K. (2004). Novel battery charging regulation system for photovoltaic applications. IEE Proceedings-Electric Power Applications, 151(2), 191–197.
  • Kumar, P., & Kumar, A. (2019). Design of battery charging circuit through intelligent MPPT using SPV system. Solar Energy, 178(July 2018), 79–89.
  • López, J., Seleme, S. I., Donoso, P. F., Morais, L. M. F., Cortizo, P. C., & Severo, M. A. (2016). Digital control strategy for a buck converter operating as a battery charger for stand-alone photovoltaic systems. Solar Energy, 140, 171–187.
  • Motahhir, S., Ghzizal, A. El, Sebti, S., & Derouich, A. (2018). Modeling of Photovoltaic System with Modified Incremental Conductance Algorithm for Fast Changes of Irradiance. International Journal of Photoenergy, 3286479, 1–13.
  • Özbay, H., Karafil, A., & Öncü, S. (2016). Simulation of Battery Charger using a Resonant Converter for PV Systems. 8th International Ege Energy Syposium, 89–93.
  • Özbay, H., Karafil, A., Öncü, S., & Kesler, M. (2015). DSP Controlled High Frequency Battery Charger for Pv Generation Systems. European Conference on Renewable Energy Systems, 7–10.
  • Padhee, S., Pati, U. C., & Mahapatra, K. (2016). Design of photovoltaic MPPT based charger for lead-acid batteries. International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, 351–356.
  • S. Hiwale, A., V.Patil, M., & Vinchurkar, H. (2014). An Efficient MPPT Solar Charge Controller. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(7), 10505–10511.
  • Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271–2285.
  • Tey, K. S., & Mekhilef, S. (2014). Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Solar Energy, 101, 333–342.
  • Yazıcı, İ., Yaylacı, E. K., Cevher, B. B., Yalçın, F., Yüzkollar, C. (2021). A new MPPT method based on a modified Fibonacci search algorithm for wind energy conversion systems. Journal of Renewable and Sustainable Energy, 13(013304), 1–11.
  • Yazıcı, İ., Yaylacı, E. K., & Yalçın, F. (2021). Modified golden section search based MPPT algorithm for the WECS. Engineering Science and Technology, an International Journal, 24(5), 1123–1133.
  • Yilmaz, U., Kircay, A., & Borekci, S. (2018). PV system fuzzy logic MPPT method and PI control as a charge controller. Renewable and Sustainable Energy Reviews, 81, 994–1001.

A Solar Charger for Lead-Acid Batteries in an Autonomous PV System

Yıl 2021, Sayı: 28, 717 - 721, 30.11.2021
https://doi.org/10.31590/ejosat.1010771

Öz

Photovoltaic energy is an intermittent energy source because the sun is gone away from evening to morning. Therefore, the batteries have a vital role in getting continuous energy sources for the autonomous system. The battery highly affects the cost of the system. Also, the life span of the batteries can not be sufficient for the consumers. At this point, the charging algorithm is so important because it protects the battery, the battery's life recycling, and the back cost time of the whole system. In this paper, a battery charger is designed to get an efficient autonomous photovoltaic system. The photovoltaic system is designed as two parallel panels, a DC-DC buck converter, and two series batteries. The lead-acid batteries are used because of the lesser cost. The lead-acid battery has three charge regions such as bulk, absorption, and float regions. The bulk region is examined for different irradiation levels in this study because the bulk region is more critical for the system's efficiency. The charge algorithm changes the duty cycle of the buck converter considering the available irradiation level. The photovoltaic charger should satisfy both the maximum power and proper charge operation for the related battery/batteries. The conventional perturb and observe algorithm is modified to eliminate drawbacks such as oscillation around maximum power and the wrong decision law when the irradiation changes. The modified perturb and observe algorithm is used as a photovoltaic charger, and the simulation results present the superiorities of the proposed method.

Kaynakça

  • Abu Eldahab, Y. E., Saad, N. H., & Zekry, A. (2014). Enhancing the maximum power point tracking techniques for photovoltaic systems. Renewable and Sustainable Energy Reviews, 40, 505–514.
  • Belkaid, A., Colak, I., & Isik, O. (2016). Photovoltaic maximum power point tracking under fast varying of solar radiation. Applied Energy, 179, 523–530.
  • Chuang, Y. C. (2010). High-Efficiency ZCS Buck Converter for Rechargeable Batteries. IEEE Transactions on Industrial Electronics, 57(7), 2463–2472.
  • Delihasanlar, E., Yaylacı, E. K., & Dalcalı, A. (2019). Dünyada ve Türkiye’de Güneş Enerjisi Potansiyeli, Mevcut Durumu, Teşvikleri, Kurulum Maliyeti Analizi-Karabük İli Örneği. Electronic Letters on Science & Engineering, 15(1), 12–20.
  • Hua, A. C. C., & Syue, B. Z. W. (2010). Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. International Power Electronics Conference, 95, 1478–1483.
  • Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters (Second edi). John Wiley & Sons, Ltd.
  • Koutroulis, E., & Kalaitzakis, K. (2004). Novel battery charging regulation system for photovoltaic applications. IEE Proceedings-Electric Power Applications, 151(2), 191–197.
  • Kumar, P., & Kumar, A. (2019). Design of battery charging circuit through intelligent MPPT using SPV system. Solar Energy, 178(July 2018), 79–89.
  • López, J., Seleme, S. I., Donoso, P. F., Morais, L. M. F., Cortizo, P. C., & Severo, M. A. (2016). Digital control strategy for a buck converter operating as a battery charger for stand-alone photovoltaic systems. Solar Energy, 140, 171–187.
  • Motahhir, S., Ghzizal, A. El, Sebti, S., & Derouich, A. (2018). Modeling of Photovoltaic System with Modified Incremental Conductance Algorithm for Fast Changes of Irradiance. International Journal of Photoenergy, 3286479, 1–13.
  • Özbay, H., Karafil, A., & Öncü, S. (2016). Simulation of Battery Charger using a Resonant Converter for PV Systems. 8th International Ege Energy Syposium, 89–93.
  • Özbay, H., Karafil, A., Öncü, S., & Kesler, M. (2015). DSP Controlled High Frequency Battery Charger for Pv Generation Systems. European Conference on Renewable Energy Systems, 7–10.
  • Padhee, S., Pati, U. C., & Mahapatra, K. (2016). Design of photovoltaic MPPT based charger for lead-acid batteries. International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, 351–356.
  • S. Hiwale, A., V.Patil, M., & Vinchurkar, H. (2014). An Efficient MPPT Solar Charge Controller. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(7), 10505–10511.
  • Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271–2285.
  • Tey, K. S., & Mekhilef, S. (2014). Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Solar Energy, 101, 333–342.
  • Yazıcı, İ., Yaylacı, E. K., Cevher, B. B., Yalçın, F., Yüzkollar, C. (2021). A new MPPT method based on a modified Fibonacci search algorithm for wind energy conversion systems. Journal of Renewable and Sustainable Energy, 13(013304), 1–11.
  • Yazıcı, İ., Yaylacı, E. K., & Yalçın, F. (2021). Modified golden section search based MPPT algorithm for the WECS. Engineering Science and Technology, an International Journal, 24(5), 1123–1133.
  • Yilmaz, U., Kircay, A., & Borekci, S. (2018). PV system fuzzy logic MPPT method and PI control as a charge controller. Renewable and Sustainable Energy Reviews, 81, 994–1001.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ersagun Kürşat Yaylacı 0000-0003-0358-5617

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Yaylacı, E. K. (2021). A Solar Charger for Lead-Acid Batteries in an Autonomous PV System. Avrupa Bilim Ve Teknoloji Dergisi(28), 717-721. https://doi.org/10.31590/ejosat.1010771