Araştırma Makalesi
BibTex RIS Kaynak Göster

Killi Zeminin Kayma Mukavemetine Cam Lifi ve Su İçeriğinin Etkisi

Yıl 2021, Sayı: 28, 890 - 894, 30.11.2021
https://doi.org/10.31590/ejosat.1011840

Öz

Günümüzde yüksek mukavemetleri ve ekonomik olmaları nedeniyle rastgele dağıtılmış ayrık lifler ile zeminlerin güçlendirilmesi tekniği geleneksel zemin güçlendirme tekniklerine bir alternatif olarak öne çıkmaktadır. Mevcut çalışmada düşük plastisiteli kil zeminin kayma mukavemeti özellikleri üzerine cam lif ilavesi ve su içeriğinin etkileri araştırılmıştır. Bu amaç için üç farklı su içeriğinde; optimum su muhtevasında, altında ve üstünde (%13, %15 ve %17) ve ağırlıkça üç farklı lif oranında (%1,0, %1,5 ve %2) lif-kil karışımları hazırlanmıştır. Hazırlanan numunelerin kayma mukavemetleri direkt kesme deneyinde incelenmiştir. Sonuç olarak en yüksek kohezyon, içsel sürtünme açısı ve kayma mukavemeti değerlerinin %13 ve %15 su muhtevası için sırasıyla %1 ve %1,5 lif içeriklerinde meydana geldiği gözlenmiştir. Buna karşılık %17 su muhtevası için optimum bir lif içeriğinin gözlenmediği, lif içeriğinin artması ile bu değerlerin sürekli arttığı sonucu elde edilmiştir. Ayrıca su içeriğinin artması ile lif-zemin arası adezyon etkisinin azalması sonucu kayma mukavemetinin azaldığı görülmüştür.

Kaynakça

  • Abdeldjouad, L., Asadi, A., Ball, R. J., Nahazanan, H., & Huat, B. B. (2019). Application of alkali-activated palm oil fuel ash reinforced with glass fibers in soil stabilization. Soils and Foundations, 59(5), 1552-1561.
  • Anagnostopoulos, C. A., Tzetzis, D., & Berketis, K. (2013). Shear strength behaviour of polypropylene fibre reinforced cohesive soils. Geomechanics and Geoengineering, 9, 241-251.
  • Arabani, M., & Haghsheno, H. (2020). The effect of water content on shear and compressive behavior of polymeric fiber-reinforced clay. SN Applied Sciences, 2(11), 1-12.
  • Asadollahi, F., & Dabiri, R. (2017). Effects of Glass Fiber Reinforced Polymer on Geotechnical Properties of Clayey Soil. Journal of Structural Engineering and Geo-Techniques, 7(2), 73-83.
  • Baruah, H. (2015). Effect of glass fibers on red soil. International Journal of Advanced Technology in Engineering and Science, 3(1), 217-223.
  • Choo, H., Yoon, B., Lee, W., & Lee, C. (2017). Evaluation of compressibility and small strain stiffness characteristics of sand reinforced with discrete synthetic fibers. Geotextiles and Geomembranes, 45(4), 331-338.
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behaviour of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29, 899-908.
  • Falorca, I. M. C. F. G., & Pinto, M. I. M. (2011). Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynthetics International, 18(1), 2-11.
  • Gao, L., Zhou, Q., Yu, X., Wu, K., & Mahfouz, A. H. (2017). Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil. Marine Georesources & Geotechnology, 35(1), 143-148.
  • Gray, D. H., & Maher, M. H. (1989). Admixture stabilization of sands with discrete, randomly distributed fibers. In Proc. of the 12th International Conference on Soil Mechanics and Foundation Engineering, August 13-18, Rio de Janeiro, Brazil.
  • Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, A. R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438-446.
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotextiles and Geomembranes, 48(4), 581-590.
  • Maher, H., & Gray, H. (1990). Static response of sand reinforced with randomly distributed fibers. Journal of Geotechnical Engineering ASCE, 116(11), 1661–1677.
  • Marandi, M., Bagheripour, H., Rahgozar, R., and Zare, H. (2008). Strength and ductility of randomly distributed palm fibers reinforced silty-sand soils. American Journal of Applied Sciences, 5(3), 209-220.
  • Motiram, P. V., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., and Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. International Journal for Research in Engineering Application and Management (IJREAM), 850-853.
  • Murray, J. J., Frost, J. D., & Wang, Y. (2000). Behavior of a sandy silt reinforced with discontinuous recycled fiber inclusions. Transportation Research Record, 1714(1), 9-17.
  • Sadeghi, M. M., & Beigi, F. H. (2014). Dynamic behavior of reinforced clayey sand under cyclic loading. Geotextiles and Geomembranes, 42(5), 564-572.
  • Saha, H. S., & Bhowmik, D. (2018). Effect of glass fiber on shear strength of soil. Key Engineering Materials, 775, 603-609.
  • Soğancı, A. S. (2015). The effect of polypropylene fiber in the stabilization of expansive soils. International Journal of Geological and Environmental Engineering, 9(8), 994-997.
  • Sujatha, E. R., Atchaya, P., Darshan, S., & Subhashini, S. (2020). Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement. Road Materials and Pavement Design, 21, 1-12.
  • Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76-84.
  • Yetimoğlu, T., & Salbaş, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.

The Effect of Glass Fiber and Water Content on Shear Strength of Clayey Soil

Yıl 2021, Sayı: 28, 890 - 894, 30.11.2021
https://doi.org/10.31590/ejosat.1011840

Öz

Today, the reinforcement with randomly distributed discrete fibers of soils stands out as an alternative to traditional soil reinforcement techniques due to their high strength and being economical. In the present study, the effects of glass fiber addition and the water content on the shear strength properties of low plasticity clay soil were investigated. For this purpose, fiber-clay mixtures were prepared at optimum water content (OWC), below OWC and above OWC (13%, 15% and 17%) and three different fiber ratios (1.0%, 1.5% and 2%) by weight. Shear strengths of the prepared samples were investigated in direct shear test. As a result, it was observed that the highest cohesion, internal friction angle and shear strength values occurred at 1% and 1.5% fiber contents for 13% and 15% water content, respectively. On the other hand, it was concluded that an optimum fiber content was not observed for 17% water content, and these values increased continuously with increasing fiber content. In addition, it was observed that the shear strength decreased as a result of the reducing in the adhesion effect between the fiber and the soil with the increase in the water content.

Kaynakça

  • Abdeldjouad, L., Asadi, A., Ball, R. J., Nahazanan, H., & Huat, B. B. (2019). Application of alkali-activated palm oil fuel ash reinforced with glass fibers in soil stabilization. Soils and Foundations, 59(5), 1552-1561.
  • Anagnostopoulos, C. A., Tzetzis, D., & Berketis, K. (2013). Shear strength behaviour of polypropylene fibre reinforced cohesive soils. Geomechanics and Geoengineering, 9, 241-251.
  • Arabani, M., & Haghsheno, H. (2020). The effect of water content on shear and compressive behavior of polymeric fiber-reinforced clay. SN Applied Sciences, 2(11), 1-12.
  • Asadollahi, F., & Dabiri, R. (2017). Effects of Glass Fiber Reinforced Polymer on Geotechnical Properties of Clayey Soil. Journal of Structural Engineering and Geo-Techniques, 7(2), 73-83.
  • Baruah, H. (2015). Effect of glass fibers on red soil. International Journal of Advanced Technology in Engineering and Science, 3(1), 217-223.
  • Choo, H., Yoon, B., Lee, W., & Lee, C. (2017). Evaluation of compressibility and small strain stiffness characteristics of sand reinforced with discrete synthetic fibers. Geotextiles and Geomembranes, 45(4), 331-338.
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behaviour of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29, 899-908.
  • Falorca, I. M. C. F. G., & Pinto, M. I. M. (2011). Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynthetics International, 18(1), 2-11.
  • Gao, L., Zhou, Q., Yu, X., Wu, K., & Mahfouz, A. H. (2017). Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil. Marine Georesources & Geotechnology, 35(1), 143-148.
  • Gray, D. H., & Maher, M. H. (1989). Admixture stabilization of sands with discrete, randomly distributed fibers. In Proc. of the 12th International Conference on Soil Mechanics and Foundation Engineering, August 13-18, Rio de Janeiro, Brazil.
  • Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, A. R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438-446.
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotextiles and Geomembranes, 48(4), 581-590.
  • Maher, H., & Gray, H. (1990). Static response of sand reinforced with randomly distributed fibers. Journal of Geotechnical Engineering ASCE, 116(11), 1661–1677.
  • Marandi, M., Bagheripour, H., Rahgozar, R., and Zare, H. (2008). Strength and ductility of randomly distributed palm fibers reinforced silty-sand soils. American Journal of Applied Sciences, 5(3), 209-220.
  • Motiram, P. V., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., and Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. International Journal for Research in Engineering Application and Management (IJREAM), 850-853.
  • Murray, J. J., Frost, J. D., & Wang, Y. (2000). Behavior of a sandy silt reinforced with discontinuous recycled fiber inclusions. Transportation Research Record, 1714(1), 9-17.
  • Sadeghi, M. M., & Beigi, F. H. (2014). Dynamic behavior of reinforced clayey sand under cyclic loading. Geotextiles and Geomembranes, 42(5), 564-572.
  • Saha, H. S., & Bhowmik, D. (2018). Effect of glass fiber on shear strength of soil. Key Engineering Materials, 775, 603-609.
  • Soğancı, A. S. (2015). The effect of polypropylene fiber in the stabilization of expansive soils. International Journal of Geological and Environmental Engineering, 9(8), 994-997.
  • Sujatha, E. R., Atchaya, P., Darshan, S., & Subhashini, S. (2020). Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement. Road Materials and Pavement Design, 21, 1-12.
  • Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76-84.
  • Yetimoğlu, T., & Salbaş, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Fatih Yazıcı 0000-0002-3557-7817

Ahmetcan Sungur 0000-0001-6200-7601

Nilay Keskin 0000-0002-0367-943X

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Yazıcı, M. F., Sungur, A., & Keskin, N. (2021). Killi Zeminin Kayma Mukavemetine Cam Lifi ve Su İçeriğinin Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(28), 890-894. https://doi.org/10.31590/ejosat.1011840