Araştırma Makalesi
BibTex RIS Kaynak Göster

Serbest Form Yüzeye Sahip Parçaların Üretim Nedenli Hata Miktarlarının Robot Kol Yardımlı Lazer Sensör ile Tespiti

Yıl 2021, Sayı: 28, 1126 - 1132, 30.11.2021
https://doi.org/10.31590/ejosat.1013033

Öz

3 boyutlu parçaların imalatında, hata miktarlarının tespiti için köprü tip CMM, gantry tip CMM ve yatay kollu CMM gibi yöntem kullanılmaktadır. Endüstride kullanılan koordinat ölçüm cihazları yüksek hassasiyete sahip olmalarına rağmen yüksek fiyat ve düşük hız gibi dezavantajlara sahiptir. Bu çalışmada endüstride kullanılan ölçüm yöntemlerine alternatif oluşturmak amaçlanmaktadır. Serbest form yüzeye sahip metal parçaların imalatı sırasında gerçekleşen hata miktarları, robot kol üzerinde bulunan lazer sensör ile noktasal tespit edilmiştir. Ölçümler için robot kolun hareket şekli, lazer sensörün ölçüm aldığı nokta sayısı ve lazer sensörün iş parçasına olan referans uzaklığı olmak üzere 3 farklı değişken kullanılmıştır. Değişkenlere ait veriler RobotStudio ortamına aktarılmış, deneyler simülasyon motorunda incelenmiş ve deneylere ait RAPID kodları elde edilmiştir. Yüksek hassasiyete sahip lazer sensör ile 27 deney şartı için noktasal tespit yapılmıştır. Deneylerden elde edilen sonuçlar numunenin CAD modeli ile karşılaştırılıp, üretimde gerçekleşen hata miktarı mikrometre (µm) olarak tespit edilmiştir. Tespit edilen hata miktarları ise CMM cihazından alınan hata miktarları ile kıyaslanmıştır. Elde edilen sonuçlar MATLAB ortamında oluşturulan grafiklerle incelenmiştir. Nokta sayısının en az olduğu durumlarda standart sapmanın 54,51 ile 74,38 arasında değiştiği ve ölçümün daha homojen bir şekilde dağıldığı görülmüştür. Ortalama hata miktarının ise artan nokta sayısı ile doğru orantılı olduğu tespit edilmiştir. Bu çalışmada alternatif olarak sunulan yöntemin iyileştirilmesi durumunda, serbest form yüzeye sahip metaller için CMM cihazları yerine kullanılabilirliğini göstermektedir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119R009

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmektedir (Proje numarası: 119R009).

Kaynakça

  • Germani, M., Mandorli, F., Mengoni, M., Raffaeli, R. (2010). CAD-based environment to bridge the gap between product design and tolerance control. J. Prec. Eng., 34, 7–15.
  • Huang, Y., Qian, X. (2007). A dynamic sensing-and-modeling approach to three-dimensional point-and-area-sensor integration. J. Manuf. Sci. Eng., 129, 623–635.
  • Hwang, C. Y., Tsai, C. Y., Chang, C. A. (2004). Efficient inspection planning for coordinate measuring machine. J. Adv. Manuf. Technol., 23, 732–742.
  • Kruth, J. P., Van Gestel, N., Bleys P., Welkenhuyzen, F. (2009). Uncertainty determination for CMMs by Monte Carlo simulation integrating feature form deviations. CIRP Ann. Manuf. Technol., 58, 463–466.
  • Li, Y., Gu, P. (2004). Free-form surface inspection techniques state of the art review. Computer-Aided Des., 36, 1396–1417.
  • Lee, G., Mou, J., Shen, Y. (1997). Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. J. Mach. Tools Manuf., 37, 917–934.
  • Lee, K.H., Park, H. (2000). Automated inspection planning of free-form shape parts by laser scanning. J. Robot. Comput Integr. Manuf., 16, 201–210.
  • Martins, F., Garcia-Bermeio, F., Casanova, E., Gonzalez, J. (2005). Automaed 3D surface scanning based on CAD model, J. Mechatron., 15, 837–857.
  • Weckenmann, A., Jiang, X., Sommer K.D., Neuschaefer-Rube, U. (2009) Multisensor data fusion in dimensional metrology. CIRP Ann. – Manuf. Technol., 58, 701–721.
  • Nashman, M., Yoshimi, B., Hong, H., Rippey, W. (1997). A unique sensor fusion system for coordinate measuring machine tasks. Proc. SPIE Intell. Syst. Adv. Manuf., 3209, 145–156.
  • Bradley, C., Chan, V. (2001) A complementary sensor approach to reverse engineering. J. Manuf. Sci. Eng., 123, 74–82.
  • Carbone, V., Carocci, M., Savio, E., Sansoni, G. (2001). Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces. J. Adv. Manuf. Technol, 17, 263–271.
  • Shen, T., Huang, J., Menq, C. (2001). Multiple sensor planning and information integration for automatic coordinate metrology. J. Comput. Inform. Sci. Eng., 1, 167–179.
  • Zhao, H., Kruth, J. P., Van Gestel, N., Boeckmans, B., Bleys, P. (2012). Automated dimensional inspection planning using the combination of laser scanner and tactile probe. Measurement, 45, 1057-1066.
  • Cheng, W. L., Menq, C. H. (1995). Integrated laser/CMM system for the dimensional inspection of objects made of soft material. The International Journal of Advanced Manufacturing Technology, 10, 36-45.
  • Morozov, M., Pierce, S. G., MacLeod, C. N., Mineo, C., Summan, C. (2018). Off-line scan path planning for robotic NDT. Measurement, 122, 284-290.
  • Heeshin, K. (2016). Study on Synchronization for Laser Scanner and Industrial Robot. Int. J. Sci. Eng. Appl. Sci. 2, 2395–3470.
  • Hatwig, J., Reinhart G., Zaeh, M. F. (2010). Automated task planning for industrial robots and laser scanners forremote laser beam welding and cutting. Prod. Eng., 4, 327.
  • Idrobo-Pizo, G. A., Motta, J. M. S., Sampaio, R. C. (2019). A calibration method for a laser triangulation scanner mounted on a robot arm for surface mapping. Sensors, 19(8), 1783.
  • Niola, V., Rossi, C., Sergio, S., Salvatore, S. A. (2010). Method for the calibration of a 3-D laser scanner, Robot. Comput.-Integr. Manuf., 27, 479–484.
  • Ren, Y., Yin, S., Zhu, J. (2012). Calibration technology in application of robot-laser scanning system. Opt. Eng., 51.
  • Li, J., Chen, M., Jin, X., Chen, Y., Dai, X., Ou, Z., Tang, Q. (2011). Calibration of a multiple axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable. Opt. Int. J. Light Electron. Opt., 122, 324–329.
  • Tzafestas, S. G., Raptis, S., Pantazopoulos, J. A. (1996). Vision-Based Path Planning Algorithm for a Robot-Mounted Welding Gun. Image Process. Commun, 2, 61–72.
  • Hatwig, J., Minnerup, P., Zaeh M. F., Reinhard, G. (2012). An Automated Path Planning System for a Robot with a Laser Scanner for Remote Laser Cutting and Welding. In Proceedings of the IEEE International Conference on Mechatronics and Automation, 5, 1323-1328.
  • Shirinzadeh, B., Teoh, P. L., Tian, Y., Dalvand, M. M., Zhong, Y., Liaw, H. C. (2010). Laser interferometry-based guidance methodology for high precisión positioning of mechanisms and robots. Robot, Comput.-Integr. Manuf., 26, 74–82.
  • Fu, S., Cheng, F., Tjahjowidodo, T., Zhou, Y., Butler, D. A. (2018). Non-Contact Measuring System for In-Situ Surface Characterization Based on Laser Confocal Microscopy. Sensors, 18, 2657.
  • Shen, C., Zhu, S. (2012). A robotic system for surface measurement via 3D laser scanner. Reconstruction, 1: 2.
  • Deng, W., Shark, L. K., Matuszewski, B. J., Smith, J. P., Cavaccini, G. (2004). CAD model-based inspection and visualisation for 3D non-destructive testing of complex aerostructures. Insight-Non-Destructive Testing and Condition Monitoring, 46, 157-161.
  • Al Khawli, T., Anwar, M., Gan, D., Islam, S. (2021). Integrating laser profile sensor to an industrial robotic arm for improving quality inspection in manufacturing processes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235, 4-17.
  • Zhuang, H., Roth, Z. S., Sudhakar, R. (1994). Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX = YB. IEEE Trans. Robot. Autom., 10, 549–554.
  • Zhuang, H., Wang, K., Roth, Z. S. (1998). Simultaneous calibration of a robot and a hand-mounted camera. IEEE Trans. Robot. Autom., 11, 649–660.
  • Paryanto, Brossog, M., Kohl, J., Merhof, J., Spreng, S., Franke, J. (2014). Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 23, 131 – 136.

Detection of Production Caused Errors of Freeform Surfaces with Robotic Arm Supported Laser Sensor

Yıl 2021, Sayı: 28, 1126 - 1132, 30.11.2021
https://doi.org/10.31590/ejosat.1013033

Öz

In the manufacture of 3 dimensional parts, a method such as bridge type CMM, gantry type CMM and horizontal arm CMM is used to detect errors. The coordinate measuring machines used in the industry have high accuracy but have disadvantages such as high price and low speed. In this study, it is aimed to create an alternative to the measurement methods used in the industry. The errors that occur
during the production of freeform surfaces metal parts are determined point by the laser sensor attached to the end of the robot arms. Three different variables are used for the measurements: the path of the robot arm, the number of points, and the reference distance of the laser sensor to the workpiece. Data from variables has been transferred to RobotStudio, experiments are simulated, and RAPID codes are obtained. The high-precision laser sensor is used to point-detect 27 experiment conditions. The results from the experiment conditions are compared to the CAD model of the workpiece and the errors in production are determined as micrometers (µm). The results are analyzed by graphs in MATLAB. It is observed that the.

Proje Numarası

119R009

Kaynakça

  • Germani, M., Mandorli, F., Mengoni, M., Raffaeli, R. (2010). CAD-based environment to bridge the gap between product design and tolerance control. J. Prec. Eng., 34, 7–15.
  • Huang, Y., Qian, X. (2007). A dynamic sensing-and-modeling approach to three-dimensional point-and-area-sensor integration. J. Manuf. Sci. Eng., 129, 623–635.
  • Hwang, C. Y., Tsai, C. Y., Chang, C. A. (2004). Efficient inspection planning for coordinate measuring machine. J. Adv. Manuf. Technol., 23, 732–742.
  • Kruth, J. P., Van Gestel, N., Bleys P., Welkenhuyzen, F. (2009). Uncertainty determination for CMMs by Monte Carlo simulation integrating feature form deviations. CIRP Ann. Manuf. Technol., 58, 463–466.
  • Li, Y., Gu, P. (2004). Free-form surface inspection techniques state of the art review. Computer-Aided Des., 36, 1396–1417.
  • Lee, G., Mou, J., Shen, Y. (1997). Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. J. Mach. Tools Manuf., 37, 917–934.
  • Lee, K.H., Park, H. (2000). Automated inspection planning of free-form shape parts by laser scanning. J. Robot. Comput Integr. Manuf., 16, 201–210.
  • Martins, F., Garcia-Bermeio, F., Casanova, E., Gonzalez, J. (2005). Automaed 3D surface scanning based on CAD model, J. Mechatron., 15, 837–857.
  • Weckenmann, A., Jiang, X., Sommer K.D., Neuschaefer-Rube, U. (2009) Multisensor data fusion in dimensional metrology. CIRP Ann. – Manuf. Technol., 58, 701–721.
  • Nashman, M., Yoshimi, B., Hong, H., Rippey, W. (1997). A unique sensor fusion system for coordinate measuring machine tasks. Proc. SPIE Intell. Syst. Adv. Manuf., 3209, 145–156.
  • Bradley, C., Chan, V. (2001) A complementary sensor approach to reverse engineering. J. Manuf. Sci. Eng., 123, 74–82.
  • Carbone, V., Carocci, M., Savio, E., Sansoni, G. (2001). Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces. J. Adv. Manuf. Technol, 17, 263–271.
  • Shen, T., Huang, J., Menq, C. (2001). Multiple sensor planning and information integration for automatic coordinate metrology. J. Comput. Inform. Sci. Eng., 1, 167–179.
  • Zhao, H., Kruth, J. P., Van Gestel, N., Boeckmans, B., Bleys, P. (2012). Automated dimensional inspection planning using the combination of laser scanner and tactile probe. Measurement, 45, 1057-1066.
  • Cheng, W. L., Menq, C. H. (1995). Integrated laser/CMM system for the dimensional inspection of objects made of soft material. The International Journal of Advanced Manufacturing Technology, 10, 36-45.
  • Morozov, M., Pierce, S. G., MacLeod, C. N., Mineo, C., Summan, C. (2018). Off-line scan path planning for robotic NDT. Measurement, 122, 284-290.
  • Heeshin, K. (2016). Study on Synchronization for Laser Scanner and Industrial Robot. Int. J. Sci. Eng. Appl. Sci. 2, 2395–3470.
  • Hatwig, J., Reinhart G., Zaeh, M. F. (2010). Automated task planning for industrial robots and laser scanners forremote laser beam welding and cutting. Prod. Eng., 4, 327.
  • Idrobo-Pizo, G. A., Motta, J. M. S., Sampaio, R. C. (2019). A calibration method for a laser triangulation scanner mounted on a robot arm for surface mapping. Sensors, 19(8), 1783.
  • Niola, V., Rossi, C., Sergio, S., Salvatore, S. A. (2010). Method for the calibration of a 3-D laser scanner, Robot. Comput.-Integr. Manuf., 27, 479–484.
  • Ren, Y., Yin, S., Zhu, J. (2012). Calibration technology in application of robot-laser scanning system. Opt. Eng., 51.
  • Li, J., Chen, M., Jin, X., Chen, Y., Dai, X., Ou, Z., Tang, Q. (2011). Calibration of a multiple axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable. Opt. Int. J. Light Electron. Opt., 122, 324–329.
  • Tzafestas, S. G., Raptis, S., Pantazopoulos, J. A. (1996). Vision-Based Path Planning Algorithm for a Robot-Mounted Welding Gun. Image Process. Commun, 2, 61–72.
  • Hatwig, J., Minnerup, P., Zaeh M. F., Reinhard, G. (2012). An Automated Path Planning System for a Robot with a Laser Scanner for Remote Laser Cutting and Welding. In Proceedings of the IEEE International Conference on Mechatronics and Automation, 5, 1323-1328.
  • Shirinzadeh, B., Teoh, P. L., Tian, Y., Dalvand, M. M., Zhong, Y., Liaw, H. C. (2010). Laser interferometry-based guidance methodology for high precisión positioning of mechanisms and robots. Robot, Comput.-Integr. Manuf., 26, 74–82.
  • Fu, S., Cheng, F., Tjahjowidodo, T., Zhou, Y., Butler, D. A. (2018). Non-Contact Measuring System for In-Situ Surface Characterization Based on Laser Confocal Microscopy. Sensors, 18, 2657.
  • Shen, C., Zhu, S. (2012). A robotic system for surface measurement via 3D laser scanner. Reconstruction, 1: 2.
  • Deng, W., Shark, L. K., Matuszewski, B. J., Smith, J. P., Cavaccini, G. (2004). CAD model-based inspection and visualisation for 3D non-destructive testing of complex aerostructures. Insight-Non-Destructive Testing and Condition Monitoring, 46, 157-161.
  • Al Khawli, T., Anwar, M., Gan, D., Islam, S. (2021). Integrating laser profile sensor to an industrial robotic arm for improving quality inspection in manufacturing processes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235, 4-17.
  • Zhuang, H., Roth, Z. S., Sudhakar, R. (1994). Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX = YB. IEEE Trans. Robot. Autom., 10, 549–554.
  • Zhuang, H., Wang, K., Roth, Z. S. (1998). Simultaneous calibration of a robot and a hand-mounted camera. IEEE Trans. Robot. Autom., 11, 649–660.
  • Paryanto, Brossog, M., Kohl, J., Merhof, J., Spreng, S., Franke, J. (2014). Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 23, 131 – 136.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdulkadir Çebi 0000-0002-3074-6554

Muhammed Turan Aslan 0000-0002-9713-4763

Hasan Demırtas 0000-0001-6067-9674

Proje Numarası 119R009
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Çebi, A., Aslan, M. T., & Demırtas, H. (2021). Serbest Form Yüzeye Sahip Parçaların Üretim Nedenli Hata Miktarlarının Robot Kol Yardımlı Lazer Sensör ile Tespiti. Avrupa Bilim Ve Teknoloji Dergisi(28), 1126-1132. https://doi.org/10.31590/ejosat.1013033