Araştırma Makalesi
BibTex RIS Kaynak Göster

Güç Sistemlerinde Hat Kopmasının Sebep Olduğu Gerilim Kararlılığındaki Bozucu Etkinin İncelenmesi ve Sistem Kararlılık Seviyesinin İyileştirilmesi

Yıl 2021, Sayı: 28, 56 - 62, 30.11.2021
https://doi.org/10.31590/ejosat.983884

Öz

Güç sistemlerinde gerilim kararsızlığına sebep olan pek çok durum söz konusudur. Bu durumlardan biri de güç sistemlerinde meydana gelme olasılığı her an mümkün olan hat kopmalarıdır. Bu çalışmada, IEEE 9 baralı güç sisteminde hat kopmalarının kararlı çalışma durumu üzerindeki etkileri incelenmiştir. İlk olarak güç sisteminin normal çalışma durumundaki statik ve dinamik analizleri yapılmıştır. Statik analiz olarak sürekli güç akış analizi, dinamik analiz olarak zaman domeni simülasyon metodu kullanılmıştır. Daha sonra her bir iletim hattı devre dışı bırakılarak analizler tekrarlanmıştır. Her bir iletim hattının kopması durumunda, sistemin maksimum yüklenme kapasitesindeki ve gerilim kararlılığındaki değişimler incelenmiştir. Son olarak sistemin kararlılık seviyesinin iyileştirilmesi amacıyla güç sistemine SVC (Statik Var Konpanzatör) bağlanmıştır. Güç sistemine SVC bağlı olduğu durumda, sistemin maksimum yüklenme kapasitesi incelenmiş ve bu durumun gerilim kararlılığına olan etkileri analiz edilmiştir. Tüm analizler MATLAB® PSAT (Power System Analysis Toolbox) programında gerçekleştirilmiştir. Yapılan analizler hat kopmasının maksimum yüklenme kapasitesini azalttığını ve gerilim kararlılığını bozduğunu göstermiştir. Güç sistemine SVC entegrasyonu ile her iki sorunun da düzeltilebileceği gözlemlenmiştir.

Kaynakça

  • Akgün, Ö. (2006). Statik Var Kompanzatör ve Tristör Kontrollü Reaktör Tasarımı (Yüksek Lisans Tezi, Niğde Üniversitesi). Niğde, Türkiye.
  • Amjady, N., & Fallahi, F. (2010). Determination of frequency stability border of power system to set the thresholds of under frequency load shedding relays. Energy Conversion and Management (Elsevier), 51(10), 1864–1872.
  • Bhowmick, S. (2018). Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers. CRC Press.
  • Brillianto Apribowo, C. H., Listiyanto, O., & Ibrahim, M. H. (2019). Placement Static Var Compensator (SVC) for Improving Voltage Stability Based on Sensitivity Analysis : A Case Study Of 500 KV Java-Bali Electrical Power System. 6th International Conference on Electric Vehicular Technology (ICEVT).
  • Das, S., Sen, D., Gupta, M., Shegaonkar, M., & Acharjee, P. (2018). Selection of Most Favourable FACTS device in Transmission Systems. IEEE 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC) - Greater Noida, India (2018.4.13-2018.4.14)] 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 550–556.
  • Dirik, H. (2006). STATCOM ve SSSC Denetleyicilerinin Güç Sistemi Gerilim Kararlılığı Üzerine Etkisinin İncelenmesi( Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi). Samsun, Türkiye.
  • Dwivedi, A. K., & Vadhera, S. (2019). Reactive Power Sustainability and Voltage Stability with Different FACTS Devices Using PSAT. 6th International Conference on Signal Processing and Integrated Networks (SPIN).
  • Gandoman, F. H., Ahmadi, A., Sharaf, A., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews (Elsevier), 502–514.
  • Guo, T., & Schlueter, R. A. (1994). Identification of Generic Bifurcation and Stability Problems in Power System Differential-Algebraic Model. IEEE Transactions on Power Systems, 9(2), 1032-1044.
  • Hermanu, C., Listiyanto, O., & Ramelan, A. (2019). Comparison of Static Var Compensator (SVC) and Unified Power Flow Controller (UPFC) for Static Voltage Stability Based on Sensitivity Analysis : A Case Study of 500 KV Java-Bali Electrical Power System. International Conference on Technologies and Policies in Electric Power & Energy.
  • Kumar, L., Raw, B. K., Gupta, S. K., & Kumar, S. (2019). Voltage Stability Enhancement Using Shunt Devices and Identification of Weak Bus through Voltage Stability Indices . 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT).
  • Kumar, S., Kumar, A., & Sharma, N. (2020). A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT. Frontiers in Energy(14(2)), 410-418.
  • Kundur, P. (1994). Power System Stabilty and Control. New York: McGraw-Hill.
  • Kwatny, H., & Pasrija, A. B. (1986). Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Transactions on Circuits and Systems, 33(10), 981–991.
  • Lakkireddy, J., Rastgoufard, R., Leevongwat, I., & Rastgoufard, P. (2015). Steady State Voltage Stability Enhancement Using Shunt and Series FACTS Devices . Clemson University Power Systems Conference (PSC), 1-5.
  • Mandour, M., El-Shimy, M., Bendary, F., & Mansour, W. M. (2014). Damping of Power Systems Oscillations using FACTS Power Oscillation Damper – Design and Performance Analysis. 16th International Middle- East Power Systems Conference (MEPCON).
  • Milano-1, ,. F. (2010). Power System Modelling and Scripting. London, U.K.: Springer.
  • Milano-2, F. (2005). An Open Source Power System Analysis Toolbox. IEEE Transactions on Power Systems, 20(3), 1199–1206.
  • Milano-3, F. (2011). Power System Analysis Toolbox Documentation for PSAT version 2.1.6. https://pdfcoffee.com/qdownload/psat-documentation-2011-pdf-free.html.
  • Oktaviani, W. A., Barlian, T., Apriani, Y., & Syarif, N. (2020). Continuous Power Flow and Time Domain Analysis for Assessing Voltage Stability. Journal of Robotics and Control (JRC), 191-198.
  • Öztürk, A., Bozali, B., & Tosun, S. (2016). Güç Sistemi Kararlılığını İyileştirecek Facts Cihazlarının Bağlantı Noktasının Belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 812-825.
  • Rosehart, W. D., & Cañizares, C. A. (1999). Bifurcation analysis of various power system models. International Journal of Electrical Power & Energy Systems (Elsevier), 21(3), 171-182.
  • Sereeter, B., Vuik, K., & Witteveen, C. (2017). Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks. Energies.
  • Shahgholian, G., Etesami, A., Shafaghi, P., Mahdavian, M., & Leilaeyoun, A. (2011). Power System Dynamic Performance Improvement with SVC Controller . IEEE 2011 International Conference on Electrical Machines and Systems (ICEMS), 1-5.
  • Sutter, J. (2016). Aplication of FACTS Devices for Power System Transient Stability Enhancement (Master Thesis, Jomo Kenyatta University). Nairobi, Kenya.
  • Tosun, S., & Öztürk, A. (2020). Investigation of Voltage Stability in Different Operating Conditions. El-Cezerî Journal of Science and Engineering, 7 (1), 179-188.
  • Turan, O., Sarı, Y., & Koker, R. (2021). Modelling a Static VAr Compensator consist of TCR and TSC. Turkish Journal of Science & Technology, 16(1), 11-21.
  • Vardani, B. (2019). Optimum Location of SVC in an IEEE 33 Bus Radial Distribution System Using Power Sensitivity Index. International Conference on Electrical, Electronics and Computer Engineering (UPCON).
  • Yeşilyurt, T., & Akbal, B. (2020). Elektrik Tesislerinde Gerilim Kararlılığının Sağlanması için Kullanılan Yöntemler. Avrupa Bilim ve Teknoloji Dergisi (Özel sayı), 287-292.

Investigation of Disruptive Effect on Voltage Stability Caused by Line Contingency in Power Systems and Improvement of System Stability

Yıl 2021, Sayı: 28, 56 - 62, 30.11.2021
https://doi.org/10.31590/ejosat.983884

Öz

There are many situations that cause voltage instability in power systems. One of these situations is line contingency that may occur in power systems. In this study, the effects of line contingency on the steady state are investigated in the IEEE 9 buses power system. Firstly, the static and dynamic analyses of the power system are made in normal operating condition. Continuous power flow analysis was used as static analysis and time domain simulation method were used as dynamic analysis. Then each transmission line is deactivated and the analyses are repeated. The changes in the maximum loading capacity and voltage stability of the system are investigated in case of each transmission line contingency. Finally, Static Var Compensator (SVC) is connected to the power system to improve the stability level. When the SVC is connected to the power system, the maximum loading capacity of the system is examined and the effects of this situation on the voltage stability are analyzed. All analyses are performed in the MATLAB® PSAT (Power System Analysis Toolbox). The results showed that the line contingency reduces the maximum loading capacity and deteriorates the voltage stability. It has been observed that both the problems can be eliminated with the SVC integration into the power system.

Kaynakça

  • Akgün, Ö. (2006). Statik Var Kompanzatör ve Tristör Kontrollü Reaktör Tasarımı (Yüksek Lisans Tezi, Niğde Üniversitesi). Niğde, Türkiye.
  • Amjady, N., & Fallahi, F. (2010). Determination of frequency stability border of power system to set the thresholds of under frequency load shedding relays. Energy Conversion and Management (Elsevier), 51(10), 1864–1872.
  • Bhowmick, S. (2018). Flexible AC Transmission Systems (FACTS): Newton Power-Flow Modeling of Voltage-Sourced Converter-Based Controllers. CRC Press.
  • Brillianto Apribowo, C. H., Listiyanto, O., & Ibrahim, M. H. (2019). Placement Static Var Compensator (SVC) for Improving Voltage Stability Based on Sensitivity Analysis : A Case Study Of 500 KV Java-Bali Electrical Power System. 6th International Conference on Electric Vehicular Technology (ICEVT).
  • Das, S., Sen, D., Gupta, M., Shegaonkar, M., & Acharjee, P. (2018). Selection of Most Favourable FACTS device in Transmission Systems. IEEE 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC) - Greater Noida, India (2018.4.13-2018.4.14)] 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 550–556.
  • Dirik, H. (2006). STATCOM ve SSSC Denetleyicilerinin Güç Sistemi Gerilim Kararlılığı Üzerine Etkisinin İncelenmesi( Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi). Samsun, Türkiye.
  • Dwivedi, A. K., & Vadhera, S. (2019). Reactive Power Sustainability and Voltage Stability with Different FACTS Devices Using PSAT. 6th International Conference on Signal Processing and Integrated Networks (SPIN).
  • Gandoman, F. H., Ahmadi, A., Sharaf, A., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews (Elsevier), 502–514.
  • Guo, T., & Schlueter, R. A. (1994). Identification of Generic Bifurcation and Stability Problems in Power System Differential-Algebraic Model. IEEE Transactions on Power Systems, 9(2), 1032-1044.
  • Hermanu, C., Listiyanto, O., & Ramelan, A. (2019). Comparison of Static Var Compensator (SVC) and Unified Power Flow Controller (UPFC) for Static Voltage Stability Based on Sensitivity Analysis : A Case Study of 500 KV Java-Bali Electrical Power System. International Conference on Technologies and Policies in Electric Power & Energy.
  • Kumar, L., Raw, B. K., Gupta, S. K., & Kumar, S. (2019). Voltage Stability Enhancement Using Shunt Devices and Identification of Weak Bus through Voltage Stability Indices . 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT).
  • Kumar, S., Kumar, A., & Sharma, N. (2020). A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT. Frontiers in Energy(14(2)), 410-418.
  • Kundur, P. (1994). Power System Stabilty and Control. New York: McGraw-Hill.
  • Kwatny, H., & Pasrija, A. B. (1986). Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Transactions on Circuits and Systems, 33(10), 981–991.
  • Lakkireddy, J., Rastgoufard, R., Leevongwat, I., & Rastgoufard, P. (2015). Steady State Voltage Stability Enhancement Using Shunt and Series FACTS Devices . Clemson University Power Systems Conference (PSC), 1-5.
  • Mandour, M., El-Shimy, M., Bendary, F., & Mansour, W. M. (2014). Damping of Power Systems Oscillations using FACTS Power Oscillation Damper – Design and Performance Analysis. 16th International Middle- East Power Systems Conference (MEPCON).
  • Milano-1, ,. F. (2010). Power System Modelling and Scripting. London, U.K.: Springer.
  • Milano-2, F. (2005). An Open Source Power System Analysis Toolbox. IEEE Transactions on Power Systems, 20(3), 1199–1206.
  • Milano-3, F. (2011). Power System Analysis Toolbox Documentation for PSAT version 2.1.6. https://pdfcoffee.com/qdownload/psat-documentation-2011-pdf-free.html.
  • Oktaviani, W. A., Barlian, T., Apriani, Y., & Syarif, N. (2020). Continuous Power Flow and Time Domain Analysis for Assessing Voltage Stability. Journal of Robotics and Control (JRC), 191-198.
  • Öztürk, A., Bozali, B., & Tosun, S. (2016). Güç Sistemi Kararlılığını İyileştirecek Facts Cihazlarının Bağlantı Noktasının Belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 812-825.
  • Rosehart, W. D., & Cañizares, C. A. (1999). Bifurcation analysis of various power system models. International Journal of Electrical Power & Energy Systems (Elsevier), 21(3), 171-182.
  • Sereeter, B., Vuik, K., & Witteveen, C. (2017). Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks. Energies.
  • Shahgholian, G., Etesami, A., Shafaghi, P., Mahdavian, M., & Leilaeyoun, A. (2011). Power System Dynamic Performance Improvement with SVC Controller . IEEE 2011 International Conference on Electrical Machines and Systems (ICEMS), 1-5.
  • Sutter, J. (2016). Aplication of FACTS Devices for Power System Transient Stability Enhancement (Master Thesis, Jomo Kenyatta University). Nairobi, Kenya.
  • Tosun, S., & Öztürk, A. (2020). Investigation of Voltage Stability in Different Operating Conditions. El-Cezerî Journal of Science and Engineering, 7 (1), 179-188.
  • Turan, O., Sarı, Y., & Koker, R. (2021). Modelling a Static VAr Compensator consist of TCR and TSC. Turkish Journal of Science & Technology, 16(1), 11-21.
  • Vardani, B. (2019). Optimum Location of SVC in an IEEE 33 Bus Radial Distribution System Using Power Sensitivity Index. International Conference on Electrical, Electronics and Computer Engineering (UPCON).
  • Yeşilyurt, T., & Akbal, B. (2020). Elektrik Tesislerinde Gerilim Kararlılığının Sağlanması için Kullanılan Yöntemler. Avrupa Bilim ve Teknoloji Dergisi (Özel sayı), 287-292.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Umut Emre Uzun 0000-0002-6209-2962

Nihat Pamuk 0000-0001-8980-6913

Sezai Taskın 0000-0002-2763-1625

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Uzun, U. E., Pamuk, N., & Taskın, S. (2021). Investigation of Disruptive Effect on Voltage Stability Caused by Line Contingency in Power Systems and Improvement of System Stability. Avrupa Bilim Ve Teknoloji Dergisi(28), 56-62. https://doi.org/10.31590/ejosat.983884