Araştırma Makalesi
BibTex RIS Kaynak Göster

Uçağın Kanat Hücum Kenarında Buzdan Arındırma Performansını Etkileyen Parameterelerin Optimizasyonu

Yıl 2022, Sayı: 34, 19 - 27, 31.03.2022
https://doi.org/10.31590/ejosat.1062495

Öz

Bu çalışmada, uçuş esnasında tehlikeli durumlardan biri olan uçak kanat hücum kenarı üzerinde buz birikimi sayısal olarak araştırılmıştır. Hedef yüzey Tw=263.15 K derecede sabit tutulurken, giriş sıcaklığı Tin=473.15 K olarak m ̇=0.004 kg/s. ile sisteme iletilmiştir. Araştırma NACA 0015 kullanarak sayısal çalışmanın sabit piccolo tüp ölçüleri, jet açısı ve jetler ve jet-hedef yüzey mesafeleri için doğrulama çalışması ile başlamıştır. İkinci ve üçüncü aşamada farklı jet açıları (30°≤≤150°) altında X (4≤H/d≤8) ve Y (-1.25≤L/d≤1.25) yönünde değişen piccolo tüp pozisyonlarının buzdan arındırma performansını incelemektir. Dördüncü aşama buzdan arındırma sisteminin performansını maksimum taşınım ısı transfer ve minimum basınç azalımı durumu ile arttırmak için optimum H/d, L/d ve oranlarını belirlemektir. Optimizasyon çalışması Yüzey Cevap Metodolojisi kullanılarak yapılmıştır. Sonuç olarak, teklif edilen tasarımda en yüksek buzdan arındırma performansı ° L/d=0.0 ve H/d=4.0 kullanılarak başarılırken, optimizasyon çalışmaları maksimum ısı transfer oranı ve minimum basınç düşüşü değerini başarmak için  L/d ve H/d değerlerinin sırasıyla 55.45°, 0.0 ve 4.0 olması gerektiğimi göstermiştir.

Kaynakça

  • L. Yi, H. Hu, C. li, Y. Zhang, S. Yang, M. Pan, Experimental investigation on enhanced flow and heat transfer performance of micro-jet impingement vapor chamber for high power electronics, Int. J. Therm. Sci. 173 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107380.
  • F. Selimefendigil, H.F. Öztop, Nanojet impingement cooling of an isothermal surface in a partially porous medium under the impact of an inclined magnetic field, J. Therm. Anal. Calorim. 141 (2020) 1875–1888. https://doi.org/10.1007/s10973-019-08839-9.
  • R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling, Int. J. Green Energy. 17 (2020) 555–567. https://doi.org/10.1080/15435075.2020.1739692.
  • A.Ü. Tepe, Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface, Int. J. Therm. Sci. 162 (2021) 106792. https://doi.org/10.1016/j.ijthermalsci.2020.106792.
  • H.K. Pazarlıoğlu, R. Ekiciler, K. Arslan, Numerical Analysis of Effect of Impinging Jet on Cooling of Solar Air Heater with Longitudinal Fins, Heat Transf. Res. 52 (2021). https://doi.org/10.1615/heattransres.2021037251.
  • E. Ayan, S. Özgen, In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D, (2017) 3–10. https://doi.org/10.13009/EUCASS2017-339.
  • O. Yirtici, K. Cengiz, S. Ozgen, I.H. Tuncer, Aerodynamic validation studies on the performance analysis of iced wind turbine blades, Comput. Fluids. 192 (2019). https://doi.org/10.1016/j.compfluid.2019.104271.
  • T. Hikmet Karakoc, M. Baris Ozerdem, M. Ziya Sogut, C.O. Colpan, O. Altuntas, E. Açıkkalp, In-Flight Icing Simulations on Airfoils, Sustain. Aviat. Energy Environ. Issues. (2016) 279–289. https://doi.org/10.1007/978-3-319-34181-1.
  • S. Özgen, M. CanIbek, Ice accretion simulation on multi-element airfoils using extended Messinger model, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 305–322. https://doi.org/10.1007/s00231-008-0430-4.
  • T.G. Myers, Extension to the Messinger model for aircraft icing, AIAA J. 39 (2001) 211–218. https://doi.org/10.2514/2.1312.
  • G. Mingione, V. Brandi, B. Esposito, Ice accretion prediction on multi-element airfoils, 35th Aerosp. Sci. Meet. Exhib. 35 (1997). https://doi.org/10.2514/6.1997-177.
  • T.G. Myers, J.P.F. Charpin, C.P. Thompson, Slowly accreting ice due to supercooled water impacting on acold surface, Phys. Fluids. 14 (2002) 240–256. https://doi.org/10.1063/1.1416186.
  • T. Cebeci, H.H. Chen, N. Alemdaroglu, Fortified LEWICE with viscous effects, 28th Aerosp. Sci. Meet. 1990. 28 (1990) 564–571. https://doi.org/10.2514/6.1990-754.
  • E. Ayan, S. Özgen, In-flight ice accretion simulation in mixed-phase conditions, Aeronaut. J. 122 (2018) 409–441. https://doi.org/10.1017/aer.2017.127.
  • L.M. Jiji, Heat convection: Second edition, Heat Convect. Second Ed. (2009) 1–543. https://doi.org/10.1007/978-3-642-02971-4.
  • N.İ.H. ALGBURI, H.K. PAZARLIOĞLU, K. ARSLAN, Effect of Pitch Ratio and Diagonal Length of Pin Fin of Heat Sink on Convective Heat Transfer for Turbulent Flow Condition, Eur. J. Sci. Technol. (2021) 643–652. https://doi.org/10.31590/ejosat.1009980.
  • Aerospaceweb.org | Ask Us - NACA Airfoil Series, (n.d.). http://www.aerospaceweb.org/question/airfoils/q0041.shtml (accessed November 28, 2021).
  • B. Yang, S. Chang, H. Wu, Y. Zhao, M. Leng, Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface, Appl. Therm. Eng. 127 (2017) 473–483. https://doi.org/10.1016/j.applthermaleng.2017.07.190.
  • F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, (2003).

Optimization of Parameters Affecting Anti-Icing Performance on Wing Leading Edge of Aircraft

Yıl 2022, Sayı: 34, 19 - 27, 31.03.2022
https://doi.org/10.31590/ejosat.1062495

Öz

In this article, one of the hazardous trouble in-flight situations called ice accumulation on wing leading edge of aircraft has been numerically investigated. While the target surface is kept constant temperature at Tw=263.15 K, the inlet temperature is taken constant at Tin=473.15 K and it enters to the system with m ̇=0.004 kg/s. The investigation starts with validation of numerical study utilizing airfoil type of NACA 0015 using constant piccolo tube dimensions, jet angle, distance among jets and distance between jet-to-target positions. The second and third stages are to analyze the anti-icing performance of changing positions of piccolo tube on X (4≤H/d≤8) and Y (-1.25≤L/d≤1.25) directions under different jet angles (30°≤≤150°). The fourth stage is to determine the optimum H/d, L/d, and ratios to increase anti-icing performance with maximum convective heat transfer and minimum pressure drop condition. The optimization study has been done using Response Surface Methodology (RSM). Finally, while the best anti-icing performance proposed design is achieved using° L/d=0.0, and H/d=4.0, the optimization results show that the L/d, and H/d values should be 55.45°, 0.0, and 4.0, respectively to achieve maximum heat transfer rate with minimum pressure drop value.

Kaynakça

  • L. Yi, H. Hu, C. li, Y. Zhang, S. Yang, M. Pan, Experimental investigation on enhanced flow and heat transfer performance of micro-jet impingement vapor chamber for high power electronics, Int. J. Therm. Sci. 173 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107380.
  • F. Selimefendigil, H.F. Öztop, Nanojet impingement cooling of an isothermal surface in a partially porous medium under the impact of an inclined magnetic field, J. Therm. Anal. Calorim. 141 (2020) 1875–1888. https://doi.org/10.1007/s10973-019-08839-9.
  • R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling, Int. J. Green Energy. 17 (2020) 555–567. https://doi.org/10.1080/15435075.2020.1739692.
  • A.Ü. Tepe, Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface, Int. J. Therm. Sci. 162 (2021) 106792. https://doi.org/10.1016/j.ijthermalsci.2020.106792.
  • H.K. Pazarlıoğlu, R. Ekiciler, K. Arslan, Numerical Analysis of Effect of Impinging Jet on Cooling of Solar Air Heater with Longitudinal Fins, Heat Transf. Res. 52 (2021). https://doi.org/10.1615/heattransres.2021037251.
  • E. Ayan, S. Özgen, In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D, (2017) 3–10. https://doi.org/10.13009/EUCASS2017-339.
  • O. Yirtici, K. Cengiz, S. Ozgen, I.H. Tuncer, Aerodynamic validation studies on the performance analysis of iced wind turbine blades, Comput. Fluids. 192 (2019). https://doi.org/10.1016/j.compfluid.2019.104271.
  • T. Hikmet Karakoc, M. Baris Ozerdem, M. Ziya Sogut, C.O. Colpan, O. Altuntas, E. Açıkkalp, In-Flight Icing Simulations on Airfoils, Sustain. Aviat. Energy Environ. Issues. (2016) 279–289. https://doi.org/10.1007/978-3-319-34181-1.
  • S. Özgen, M. CanIbek, Ice accretion simulation on multi-element airfoils using extended Messinger model, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 305–322. https://doi.org/10.1007/s00231-008-0430-4.
  • T.G. Myers, Extension to the Messinger model for aircraft icing, AIAA J. 39 (2001) 211–218. https://doi.org/10.2514/2.1312.
  • G. Mingione, V. Brandi, B. Esposito, Ice accretion prediction on multi-element airfoils, 35th Aerosp. Sci. Meet. Exhib. 35 (1997). https://doi.org/10.2514/6.1997-177.
  • T.G. Myers, J.P.F. Charpin, C.P. Thompson, Slowly accreting ice due to supercooled water impacting on acold surface, Phys. Fluids. 14 (2002) 240–256. https://doi.org/10.1063/1.1416186.
  • T. Cebeci, H.H. Chen, N. Alemdaroglu, Fortified LEWICE with viscous effects, 28th Aerosp. Sci. Meet. 1990. 28 (1990) 564–571. https://doi.org/10.2514/6.1990-754.
  • E. Ayan, S. Özgen, In-flight ice accretion simulation in mixed-phase conditions, Aeronaut. J. 122 (2018) 409–441. https://doi.org/10.1017/aer.2017.127.
  • L.M. Jiji, Heat convection: Second edition, Heat Convect. Second Ed. (2009) 1–543. https://doi.org/10.1007/978-3-642-02971-4.
  • N.İ.H. ALGBURI, H.K. PAZARLIOĞLU, K. ARSLAN, Effect of Pitch Ratio and Diagonal Length of Pin Fin of Heat Sink on Convective Heat Transfer for Turbulent Flow Condition, Eur. J. Sci. Technol. (2021) 643–652. https://doi.org/10.31590/ejosat.1009980.
  • Aerospaceweb.org | Ask Us - NACA Airfoil Series, (n.d.). http://www.aerospaceweb.org/question/airfoils/q0041.shtml (accessed November 28, 2021).
  • B. Yang, S. Chang, H. Wu, Y. Zhao, M. Leng, Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface, Appl. Therm. Eng. 127 (2017) 473–483. https://doi.org/10.1016/j.applthermaleng.2017.07.190.
  • F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, (2003).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hayati Kadir Pazarlıoğlu 0000-0002-9365-9431

Ahmet Ümit Tepe 0000-0001-7626-6348

Kamil Arslan 0000-0002-1216-6812

Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Pazarlıoğlu, H. K., Tepe, A. Ü., & Arslan, K. (2022). Optimization of Parameters Affecting Anti-Icing Performance on Wing Leading Edge of Aircraft. Avrupa Bilim Ve Teknoloji Dergisi(34), 19-27. https://doi.org/10.31590/ejosat.1062495