Araştırma Makalesi
BibTex RIS Kaynak Göster

Kare Desenli Soğurucu Yüzeyin Güneş Hava Kollektör Verimine Etkisinin Sayısal Analizi

Yıl 2022, Sayı: 34, 763 - 768, 31.03.2022
https://doi.org/10.31590/ejosat.1086722

Öz

Bu çalışmada, kare desenli alüminyum soğurucu yüzeye sahip bir güneş hava kollektörünün HAD (Hesaplamalı Akışkanlar Dinamiği) analizleri yapılmıştır. Güneş hava kollektörünün verimliliğini arttırmak için kare desenli, pürüzlü bir alüminyum soğurucu yüzey kullanılmıştır. Kollektör içerisindeki çalışma havası, kollektörün sağ, sol ve alt kenarlarından, 15mm aralıklı ve 5mm çapında delikler yardımıyla çekilmektedir. Isı transferi ve hava akış özelliklerinin incelenmesi amacıyla kenar hava alıklı bir güneş hava kollektörünün HAD analizleri yapılmış, farklı ışınım ve kütle debileri altında sistemin optimum çalışma aralıkları belirlenerek karşılaştırılmıştır. Alüminyum kare yapılı kollektörün, 600 W/m², 800 W/m², 1000 W/m², 1200 W/m² ışınım, 0.01-0.015 kg/s kütle debileri ve 20 °C sabit hava giriş sıcaklığı için termal analizleri gerçekleştirilmiş ve çıkan havanın sıcaklık değerleri bulunmuştur.

Destekleyen Kurum

Necmettin Erbakan Üniversitesi BAP Birimi

Proje Numarası

2113MER03003

Teşekkür

Bu çalışma, Necmettin Erbakan Üniversitesi BAP Birimi tarafından 2113MER03003 nolu proje ile desteklenmiştir.

Kaynakça

  • A. Sharma, R. Pitchumani, R. Chauhan, Solar air heating systems with latent heat storage - A review of state-of-the-art, Journal of Energy Storage. 48 (2022) 104013. doi:10.1016/j.est.2022.104013.
  • V.P. Katekar, S.S. Deshmukh, Techno-economic review of solar distillation systems: A closer look at the recent developments for commercialisation, Journal of Cleaner Production. 294 (2021) 126289. doi:10.1016/j.jclepro.2021.126289.
  • V.P. Katekar, S.S. Deshmukh, A review of the use of phase change materials on performance of solar stills, Journal of Energy Storage. 30 (2020) 101398. doi:10.1016/j.est.2020.101398.
  • A.E. Kabeel, M.H. Hamed, Z.M. Omara, A.W. Kandeal, Solar air heaters: Design configurations, improvement methods and applications – A detailed review, Renewable and Sustainable Energy Reviews. 70 (2017) 1189–1206. doi:10.1016/j.rser.2016.12.021.
  • G. Sureandhar, G. Srinivasan, P. Muthukumar, S. Senthilmurugan, Investigation of thermal performance in a solar air heater having variable arc ribbed fin configuration, Sustainable Energy Technologies and Assessments. 52 (2022) 102069. doi:10.1016/j.seta.2022.102069.
  • E.M.S. El-Said, M.A. Gohar, A. Ali, G.B. Abdelaziz, Performance enhancement of a double pass solar air heater by using curved reflector: Experimental investigation, Applied Thermal Engineering. 202 (2022) 117867. doi:10.1016/j.applthermaleng.2021.117867.
  • R. Kumar, Gaurav, S. Kumar, A. Afzal, A. Muthu Manokar, M. Sharifpur, A. Issakhov, Experimental investigation of impact of the energy storage medium on the thermal performance of double pass solar air heater, Sustainable Energy Technologies and Assessments. 48 (2021) 101673. doi:10.1016/j.seta.2021.101673.
  • V.S. Hans, R.P. Saini, J.S. Saini, Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs, Solar Energy. 84 (2010) 898–911. doi:10.1016/j.solener.2010.02.004.
  • A.H. Abdullah, H.Z. Abou-Ziyan, A.A. Ghoneim, Thermal performance of flat plate solar collector using various arrangements of compound honeycomb, Energy Conversion and Management. 44 (2003) 3093–3112. doi:10.1016/S0196-8904(03)00013-X.
  • D. Jin, J. Zuo, S. Quan, S. Xu, H. Gao, Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate, Energy. 127 (2017) 68–77. doi:10.1016/j.energy.2017.03.101.
  • M. Abuşka, S. Şevik, A. Kayapunar, Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection, Solar Energy Materials and Solar Cells. 195 (2019) 299–308. doi:10.1016/j.solmat.2019.02.040.
  • Y. Zhao, T. Meng, C. Jing, J. Hu, S. Qian, Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector, Solar Energy. 204 (2020) 294–306. doi:10.1016/j.solener.2020.04.047.
  • S. EYYUBLU, M.S. BÜKER, Alüminyum Balpeteği Soğurucu Yüzeye Sahip bir Güneş Hava Kollektörünün HAD Analizi, European Journal of Science and Technology. (2022) 484–490. doi:10.31590/ejosat.1039534.
  • A.S. Yadav, M.K. Dwivedi, A. Sharma, V.K. Chouksey, CFD based heat transfer correlation for ribbed solar air heater, Materials Today: Proceedings. (2022). doi:10.1016/j.matpr.2021.12.382.
  • A.S. Yadav, V. Shrivastava, A. Sharma, M.K. Dwivedi, Numerical simulation and CFD-based correlations for artificially roughened solar air heater, Materials Today: Proceedings. 47 (2021) 2685–2693. doi:10.1016/j.matpr.2021.02.759.
  • A.S.T. Tan, J. Janaun, H.J. Tham, N.J. Siambun, A. Abdullah, Performance analysis of a solar heat collector through experimental and CFD investigation, Materials Today: Proceedings. (2022). doi:10.1016/j.matpr.2022.02.159.
  • F. Afshari, H.G. Zavaragh, B. Sahin, R.C. Grifoni, F. Corvaro, B. Marchetti, F. Polonara, On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers, Mathematics and Computers in Simulation. 152 (2018) 51–68. doi:10.1016/j.matcom.2018.04.004.
  • A. Sözen, F.Ş. Kazancıoğlu, A.D. Tuncer, A. Khanlari, Y.C. Bilge, A. Gungor, Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool, Solar Energy. 217 (2021) 328–341. doi:10.1016/j.solener.2021.02.029.
  • M. Ahsan, Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment, Beni-Suef University Journal of Basic and Applied Sciences. 3 (2014) 269–277. doi:10.1016/j.bjbas.2014.12.001.
  • K. Rajarajeswari, P. Alok, A. Sreekumar, Simulation and experimental investigation of fluid flow in porous and non-porous solar air heaters, Solar Energy. 171 (2018) 258–270. doi:10.1016/j.solener.2018.06.079.
  • E. Alic, M. Das, E.K. Akpinar, Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector, Journal of Cleaner Production. 311 (2021) 127518. doi:10.1016/j.jclepro.2021.127518.

Numerical Analysis on Solar Air Collector provided with Square Patterned Absorber Surface

Yıl 2022, Sayı: 34, 763 - 768, 31.03.2022
https://doi.org/10.31590/ejosat.1086722

Öz

In this study, CFD (Computational Fluid Dynamics) analysis of the solar air collector were carried out. An aluminum absorber surface with a square geometry is used to increase the thermal efficiency of the solar air collector. The working air inside the collector is drawn in with the help of holes with a diameter of 5mm at 15mm intervals on the right, left and bottom edges of the collector. CFD analysis of the solar air collector were performed to examine the heat transfer and air flow properties, and the optimum operating ranges of the system were determined and compared under different radiation and mass flow rates. Thermal analysis of the square patterned aluminum absorber collector were carried out for 600 W/m², 800 W/m², 1000 W/m², and 1200 W/m² radiation at 0.01-0.015 kg/s mass flow rates and 20°C constant air inlet temperature and the temperature values of the outlet air has been obtained.

Proje Numarası

2113MER03003

Kaynakça

  • A. Sharma, R. Pitchumani, R. Chauhan, Solar air heating systems with latent heat storage - A review of state-of-the-art, Journal of Energy Storage. 48 (2022) 104013. doi:10.1016/j.est.2022.104013.
  • V.P. Katekar, S.S. Deshmukh, Techno-economic review of solar distillation systems: A closer look at the recent developments for commercialisation, Journal of Cleaner Production. 294 (2021) 126289. doi:10.1016/j.jclepro.2021.126289.
  • V.P. Katekar, S.S. Deshmukh, A review of the use of phase change materials on performance of solar stills, Journal of Energy Storage. 30 (2020) 101398. doi:10.1016/j.est.2020.101398.
  • A.E. Kabeel, M.H. Hamed, Z.M. Omara, A.W. Kandeal, Solar air heaters: Design configurations, improvement methods and applications – A detailed review, Renewable and Sustainable Energy Reviews. 70 (2017) 1189–1206. doi:10.1016/j.rser.2016.12.021.
  • G. Sureandhar, G. Srinivasan, P. Muthukumar, S. Senthilmurugan, Investigation of thermal performance in a solar air heater having variable arc ribbed fin configuration, Sustainable Energy Technologies and Assessments. 52 (2022) 102069. doi:10.1016/j.seta.2022.102069.
  • E.M.S. El-Said, M.A. Gohar, A. Ali, G.B. Abdelaziz, Performance enhancement of a double pass solar air heater by using curved reflector: Experimental investigation, Applied Thermal Engineering. 202 (2022) 117867. doi:10.1016/j.applthermaleng.2021.117867.
  • R. Kumar, Gaurav, S. Kumar, A. Afzal, A. Muthu Manokar, M. Sharifpur, A. Issakhov, Experimental investigation of impact of the energy storage medium on the thermal performance of double pass solar air heater, Sustainable Energy Technologies and Assessments. 48 (2021) 101673. doi:10.1016/j.seta.2021.101673.
  • V.S. Hans, R.P. Saini, J.S. Saini, Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs, Solar Energy. 84 (2010) 898–911. doi:10.1016/j.solener.2010.02.004.
  • A.H. Abdullah, H.Z. Abou-Ziyan, A.A. Ghoneim, Thermal performance of flat plate solar collector using various arrangements of compound honeycomb, Energy Conversion and Management. 44 (2003) 3093–3112. doi:10.1016/S0196-8904(03)00013-X.
  • D. Jin, J. Zuo, S. Quan, S. Xu, H. Gao, Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate, Energy. 127 (2017) 68–77. doi:10.1016/j.energy.2017.03.101.
  • M. Abuşka, S. Şevik, A. Kayapunar, Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection, Solar Energy Materials and Solar Cells. 195 (2019) 299–308. doi:10.1016/j.solmat.2019.02.040.
  • Y. Zhao, T. Meng, C. Jing, J. Hu, S. Qian, Experimental and numerical investigation on thermal performance of PV-driven aluminium honeycomb solar air collector, Solar Energy. 204 (2020) 294–306. doi:10.1016/j.solener.2020.04.047.
  • S. EYYUBLU, M.S. BÜKER, Alüminyum Balpeteği Soğurucu Yüzeye Sahip bir Güneş Hava Kollektörünün HAD Analizi, European Journal of Science and Technology. (2022) 484–490. doi:10.31590/ejosat.1039534.
  • A.S. Yadav, M.K. Dwivedi, A. Sharma, V.K. Chouksey, CFD based heat transfer correlation for ribbed solar air heater, Materials Today: Proceedings. (2022). doi:10.1016/j.matpr.2021.12.382.
  • A.S. Yadav, V. Shrivastava, A. Sharma, M.K. Dwivedi, Numerical simulation and CFD-based correlations for artificially roughened solar air heater, Materials Today: Proceedings. 47 (2021) 2685–2693. doi:10.1016/j.matpr.2021.02.759.
  • A.S.T. Tan, J. Janaun, H.J. Tham, N.J. Siambun, A. Abdullah, Performance analysis of a solar heat collector through experimental and CFD investigation, Materials Today: Proceedings. (2022). doi:10.1016/j.matpr.2022.02.159.
  • F. Afshari, H.G. Zavaragh, B. Sahin, R.C. Grifoni, F. Corvaro, B. Marchetti, F. Polonara, On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers, Mathematics and Computers in Simulation. 152 (2018) 51–68. doi:10.1016/j.matcom.2018.04.004.
  • A. Sözen, F.Ş. Kazancıoğlu, A.D. Tuncer, A. Khanlari, Y.C. Bilge, A. Gungor, Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool, Solar Energy. 217 (2021) 328–341. doi:10.1016/j.solener.2021.02.029.
  • M. Ahsan, Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment, Beni-Suef University Journal of Basic and Applied Sciences. 3 (2014) 269–277. doi:10.1016/j.bjbas.2014.12.001.
  • K. Rajarajeswari, P. Alok, A. Sreekumar, Simulation and experimental investigation of fluid flow in porous and non-porous solar air heaters, Solar Energy. 171 (2018) 258–270. doi:10.1016/j.solener.2018.06.079.
  • E. Alic, M. Das, E.K. Akpinar, Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector, Journal of Cleaner Production. 311 (2021) 127518. doi:10.1016/j.jclepro.2021.127518.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sharif Eyyublu 0000-0002-9700-5187

Mahmut Sami Büker 0000-0002-0896-2293

Proje Numarası 2113MER03003
Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Eyyublu, S., & Büker, M. S. (2022). Kare Desenli Soğurucu Yüzeyin Güneş Hava Kollektör Verimine Etkisinin Sayısal Analizi. Avrupa Bilim Ve Teknoloji Dergisi(34), 763-768. https://doi.org/10.31590/ejosat.1086722