Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğrusal olmayan kesirli fark denklemlerinin kararlılık analizi üzerine bir not: Karşılaştırmalı yaklaşım

Yıl 2022, Sayı: 35, 116 - 122, 07.05.2022
https://doi.org/10.31590/ejosat.1063439

Öz

Bu çalışmada ν∈(0,1] mertebesinde doğrusal olmayan kesirli fark denklemleri üzerinde durulmuş olup, h-kararlılık ve Mittag-Leffler kararlılığı kavramları kullanılarak bir kararlılık analizi yapılmıştır. Makalenin temel sonuçları odaklanılan kesirli fark denkleminin yardımcı bir kesirli fark denklemi ile karşılaştırılması ve kıyaslanması ile elde edilmiştir. Bu çalışmanın çıktıları literatürde kesirli denklemlerin kararlılık analizinde genellikle kullanılan sabit nokta teorisi ve Liapunov teorisi gibi araçların dışında bir yol kullanılarak elde edildiği için halen gelişmekte olan ayrık kesirli denklemlerin teorisine farklı bir bakış açısı sunarak katkı sağlamıştır.

Kaynakça

  • Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers and Mathematics with Applications, 62 (3), 1602-1611. Doi: 10.1016/j.camwa.2011.03.036
  • Atıcı, F. M., & Eloe, P. W. (2007). A transform method in discrete fractional calculus. International Journal of Difference Equations, 2 (2), 165-176.
  • Atıcı, F. M., & Eloe, P. W. (2009a). Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, Spec. Ed. I, 3, 1-12. Doi: 10.14232/ejqtde.2009.4.3
  • Atıcı, F. M., & Eloe, P. W. (2009b). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137 (3), 981-989. Doi: 10.1090/S0002-9939-08-09626-3
  • Atıcı, F. M., & Eloe, P. W. (2015). Linear forward fractional difference equations. Communications in Applied Analysis, 19 (1), 31-42.
  • Baleanu, D., Wu, G.–C., Bai, Y.–R., & Chen, F.–L. (2017). Stability analysis of Caputo–like discrete fractional systems. Communications in Nonlinear Science and Numerical Simulation, 48, 520-530. Doi: 10.1016/j.cnsns.2017.01.002
  • Chen, F. (2011). Fixed points and asymptotic stability of nonlinear fractional difference equations. Electronic Journal of Qualitative Theory of Differential Equations, 39, 1-18. Doi: 10.14232/ejqtde.2011.1.39
  • Chen, F., & Liu, Z. (2012). Asymptotic stability results for nonlinear fractional difference equations. Journal of Applied Mathematics, 2012, Article ID 879657. Doi: 10.1155/2012/879657
  • Chen, F., Luo, X., & Zhou, Y. (2011). Existence results for nonlinear fractional difference equation. Advances in Difference Equations, 2011, Article ID 713201. Doi: 10.1155/2011/713201
  • Choi, S. K., & Koo, N. (2011). The monotonic property and stability of solutions of fractional differential equations. Nonlinear Analysis, 74 (17), 6530-6536. Doi: 10.1016/j.na.2011.06.037
  • Choi, S. K., Kang, B., & Koo, N. (2014). Stability for Caputo fractional differential systems. Abstract and Applied Analysis, 2014, Article ID 631419. Doi: 10.1155/2014/631419
  • Choi, S. K., Koo, N. J., & Song, S. M. (2004). h-Stability for nonlinear perturbed difference systems. Bulletin of the Korean Mathematical Society, 41 (3), 435-450. Doi: 10.4134/BKMS.2004.41.3.435
  • Choi, S. K., Koo, N. J., & Ryu, H. S. (2003). Asymptotic equivalence between two difference systems. Computers and Mathematics with Applications, 45 (6-9), 1327-1337. Doi: 10.1016/S0898-1221(03)00106-8
  • Deekshitulu, G., & Mohan, J. J. (2013). Solutions of perturbed nonlinear nabla fractional difference equations of order 0<α<1. Mathematica Aeterna, 3 (2), 139-150.
  • Kang, B., & Koo, N. (2019). Stability properties in impulsive differential systems of non-integer order. Journal of the Korean Mathematical Society, 56 (1), 127-147. Doi: 10.4134/JKMS.j180106
  • Medina, R. (1998). Asymptotic behavior of nonlinear difference systems. Journal of Mathematical Analysis and Applications, 219 (2), 294-311. Doi: 10.1006/jmaa.1997.5798
  • Medina, R., & Pinto, M. (1996). Stability of nonlinear difference equations. Dynamic Systems and Applications, 2, 397-404.
  • Mittag-Leffler, M. G. (1902). Sur l'intégrale de Laplace-Abel. Comptes Rendus de l'Académie des Sciences, Series II, 135, 937-939.
  • Mohan, J. J. (2013). Solutions of perturbed nonlinear nabla fractional difference equations. Novi Sad Journal of Mathematics, 43 (2), 125-138.
  • Pinto, M. (1984). Perturbations of asymptotically stable differential systems. Analysis 4, 161-175.
  • Wyrwas, M., & Mozyrska, D. (2015). On Mittag-Leffler stability of fractional order difference systems. Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering.320, pp. 209-220. Opole, Poland: Springer.

A note on the stability analysis of nonlinear fractional difference equations: Comparative approach

Yıl 2022, Sayı: 35, 116 - 122, 07.05.2022
https://doi.org/10.31590/ejosat.1063439

Öz

In this study, we focus on nonlinear forward fractional difference equations with order ν∈(0,1] and construct stability analysis regarding h-stability and Mittag-Leffler stability notions. The main results of the paper are obtained by equiparating the equation in the spotlight with an auxiliary fractional difference equation. The outcomes of the manuscript provide an alternative approach to the ongoing theory of discrete fractional equations since the method used in the main results deviates from the fundamental tools of stability theory, namely fixed point theory and Liapunov's direct method.

Kaynakça

  • Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers and Mathematics with Applications, 62 (3), 1602-1611. Doi: 10.1016/j.camwa.2011.03.036
  • Atıcı, F. M., & Eloe, P. W. (2007). A transform method in discrete fractional calculus. International Journal of Difference Equations, 2 (2), 165-176.
  • Atıcı, F. M., & Eloe, P. W. (2009a). Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, Spec. Ed. I, 3, 1-12. Doi: 10.14232/ejqtde.2009.4.3
  • Atıcı, F. M., & Eloe, P. W. (2009b). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137 (3), 981-989. Doi: 10.1090/S0002-9939-08-09626-3
  • Atıcı, F. M., & Eloe, P. W. (2015). Linear forward fractional difference equations. Communications in Applied Analysis, 19 (1), 31-42.
  • Baleanu, D., Wu, G.–C., Bai, Y.–R., & Chen, F.–L. (2017). Stability analysis of Caputo–like discrete fractional systems. Communications in Nonlinear Science and Numerical Simulation, 48, 520-530. Doi: 10.1016/j.cnsns.2017.01.002
  • Chen, F. (2011). Fixed points and asymptotic stability of nonlinear fractional difference equations. Electronic Journal of Qualitative Theory of Differential Equations, 39, 1-18. Doi: 10.14232/ejqtde.2011.1.39
  • Chen, F., & Liu, Z. (2012). Asymptotic stability results for nonlinear fractional difference equations. Journal of Applied Mathematics, 2012, Article ID 879657. Doi: 10.1155/2012/879657
  • Chen, F., Luo, X., & Zhou, Y. (2011). Existence results for nonlinear fractional difference equation. Advances in Difference Equations, 2011, Article ID 713201. Doi: 10.1155/2011/713201
  • Choi, S. K., & Koo, N. (2011). The monotonic property and stability of solutions of fractional differential equations. Nonlinear Analysis, 74 (17), 6530-6536. Doi: 10.1016/j.na.2011.06.037
  • Choi, S. K., Kang, B., & Koo, N. (2014). Stability for Caputo fractional differential systems. Abstract and Applied Analysis, 2014, Article ID 631419. Doi: 10.1155/2014/631419
  • Choi, S. K., Koo, N. J., & Song, S. M. (2004). h-Stability for nonlinear perturbed difference systems. Bulletin of the Korean Mathematical Society, 41 (3), 435-450. Doi: 10.4134/BKMS.2004.41.3.435
  • Choi, S. K., Koo, N. J., & Ryu, H. S. (2003). Asymptotic equivalence between two difference systems. Computers and Mathematics with Applications, 45 (6-9), 1327-1337. Doi: 10.1016/S0898-1221(03)00106-8
  • Deekshitulu, G., & Mohan, J. J. (2013). Solutions of perturbed nonlinear nabla fractional difference equations of order 0<α<1. Mathematica Aeterna, 3 (2), 139-150.
  • Kang, B., & Koo, N. (2019). Stability properties in impulsive differential systems of non-integer order. Journal of the Korean Mathematical Society, 56 (1), 127-147. Doi: 10.4134/JKMS.j180106
  • Medina, R. (1998). Asymptotic behavior of nonlinear difference systems. Journal of Mathematical Analysis and Applications, 219 (2), 294-311. Doi: 10.1006/jmaa.1997.5798
  • Medina, R., & Pinto, M. (1996). Stability of nonlinear difference equations. Dynamic Systems and Applications, 2, 397-404.
  • Mittag-Leffler, M. G. (1902). Sur l'intégrale de Laplace-Abel. Comptes Rendus de l'Académie des Sciences, Series II, 135, 937-939.
  • Mohan, J. J. (2013). Solutions of perturbed nonlinear nabla fractional difference equations. Novi Sad Journal of Mathematics, 43 (2), 125-138.
  • Pinto, M. (1984). Perturbations of asymptotically stable differential systems. Analysis 4, 161-175.
  • Wyrwas, M., & Mozyrska, D. (2015). On Mittag-Leffler stability of fractional order difference systems. Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering.320, pp. 209-220. Opole, Poland: Springer.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Halis Can Koyuncuoğlu 0000-0002-8880-1552

Nezihe Turhan Turan 0000-0002-9012-4386

Yayımlanma Tarihi 7 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 35

Kaynak Göster

APA Koyuncuoğlu, H. C., & Turhan Turan, N. (2022). A note on the stability analysis of nonlinear fractional difference equations: Comparative approach. Avrupa Bilim Ve Teknoloji Dergisi(35), 116-122. https://doi.org/10.31590/ejosat.1063439