Dünya nüfusundaki artış ve bunun sonucunda ortaya çıkan su ve enerji talebi, su kaynakları üzerinde artan bir baskı oluşturmaktadır. Makine öğrenmesi (ML), nehir akışlarını tahmin etmede etkin bir rol oynamaktadır. ML yöntemlerinden olan tekrarlayan sinir ağı (RNN) modeli, tekrarlayan veri setlerinde kaybolan gradyan sorunu nedeniyle yetersiz kalmıştır. Uzun kısa süreli bellek ağları (LSTM), ağ hücrelerinin önceden depolanmış belleklerinin bir kısmını unutmasına izin verir. Diğer bir yöntem olan geçitli tekrarlayan birim (GRU) ise hafızayı günceller ve kayıp problemini çözer. GRU'nun eğitim parametresi daha az olduğu ve daha az bellek kullandığı için hızlıdır, LSTM modelinde ise daha uzun diziler kullanıldığından veri kümesinde daha doğrudur. Fırat Nehri üzerindeki (E21A035) Bulam akış ölçüm istasyonunun (FMS) (2000-2009) akış verilerinden elde edilen veri seti orta büyüklükte ve tekrarlayan değerlere sahip olduğundan çalışmada bu iki model bu istasyondan elde edilen veriler ile karşılaştırılmıştır. Çalışma için Adadelta, Adagrad, FTRL, SGD, RMSprop, Nadam, Adamax, Adam iyileştiricileri test edilmiştir. R2, MAE, RMSE istatistiksel değerlendirme kriterleri göz önüne alındığında Adam ve Adamax optimize edicilerin daha iyi sonuçlar verdiği görülmüş ve verilere en uygun olan bu iyileştiricilerin kullanılmasına karar verilmiştir. Çalışmada MAE, MSE ve LogCosh kayıp fonksiyonları kullanılmıştır. LSTM ve GRU modellerinin performansı analiz edildiğinde, GRU modelinden daha iyi sonuçlar elde edildiği, 0.3346 RMSE, 0.1464 MAE ve 0.9718 R2 değerleri ile gözlemlenmiştir.
Dünya nüfusundaki artış ve bunun sonucunda ortaya çıkan su ve enerji talebi, su kaynakları üzerinde artan bir baskı oluşturmaktadır. Makine öğrenmesi (ML), nehir akışlarını tahmin etmede etkin bir rol oynamaktadır. ML yöntemlerinden olan tekrarlayan sinir ağı (RNN) modeli, tekrarlayan veri setlerinde kaybolan gradyan sorunu nedeniyle yetersiz kalmıştır. Uzun kısa süreli bellek ağları (LSTM), ağ hücrelerinin önceden depolanmış belleklerinin bir kısmını unutmasına izin verir. Diğer bir yöntem olan geçitli tekrarlayan birim (GRU) ise hafızayı günceller ve kayıp problemini çözer. GRU'nun eğitim parametresi daha az olduğu ve daha az bellek kullandığı için hızlıdır, LSTM modelinde ise daha uzun diziler kullanıldığından veri kümesinde daha doğrudur. Fırat Nehri üzerindeki (E21A035) Bulam akış ölçüm istasyonunun (FMS) (2000-2009) akış verilerinden elde edilen veri seti orta büyüklükte ve tekrarlayan değerlere sahip olduğundan çalışmada bu iki model bu istasyondan elde edilen veriler ile karşılaştırılmıştır. Çalışma için Adadelta, Adagrad, FTRL, SGD, RMSprop, Nadam, Adamax, Adam iyileştiricileri test edilmiştir. R2, MAE, RMSE istatistiksel değerlendirme kriterleri göz önüne alındığında Adam ve Adamax optimize edicilerin daha iyi sonuçlar verdiği görülmüş ve verilere en uygun olan bu iyileştiricilerin kullanılmasına karar verilmiştir. Çalışmada MAE, MSE ve LogCosh kayıp fonksiyonları kullanılmıştır. LSTM ve GRU modellerinin performansı analiz edildiğinde, GRU modelinden daha iyi sonuçlar elde edildiği, 0.3346 RMSE, 0.1464 MAE ve 0.9718 R2 değerleri ile gözlemlenmiştir.
nehir akımları uzun kısa süreli bellek ağları geçitli tekrarlayan birim
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 26 Temmuz 2022 |
Yayımlanma Tarihi | 31 Ağustos 2022 |
Yayımlandığı Sayı | Yıl 2022 Sayı: 38 |