Araştırma Makalesi
BibTex RIS Kaynak Göster

Piston Pimi Zorlanmış Frekans Yanıt Analizi

Yıl 2022, Sayı: 41, 373 - 383, 30.11.2022
https://doi.org/10.31590/ejosat.1179755

Öz

Bu çalışmada, piston pimi üzerinde zorlanmış frekans yanıt analizi uygulanmıştır. Piston pimindeki titreşimi analiz etmek için Ansys Mechanical 19.2 programı kullanılmıştır. Modal analiz sonuçlarına dayalı olan sonlu eleman analizi tamamlandığında, modelin doğal frekansları ilk 12 mod için 38721 ile 79346 Hertz arasında değişmektedir. Modal analiz sonuçlarına göre, piston pimi çalışma sırasında rezonansa maruz kalmayacaktır. Bu nedenle, modal analizde elde edilen ilk 12 modun doğal frekanslarıyla çakışabilecek rezonans frekanslarını tespit etmek için modal analizi içeren bir frekans taraması gereklidir. Sonuç olarak, 30000-80000 Hz aralığında 1000 Hz'lik adımlarla 50 aralıklı mod süperpozisyon yöntemi kullanılarak harmonik analizi çözdürülmüştür. Rezonans frekanslarını azaltmak için altı farklı sabit sönüm oranı kullanılarak harmonik analizler tekrarlanmış ve sonuçlar karşılaştırılmıştır.

Kaynakça

  • Arioli, G., & Gazzola, F. (2015). A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge. Applied Mathematical Modelling, 39(2), 901–912. https://doi.org/https://doi.org/10.1016/j.apm.2014.06.022
  • Binoy, J., Marchewka, M. K., & Jayakumar, V. S. (2013). The ‘partial resonance’ of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO–LUMO and MESP mapping. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 97–109. https://doi.org/https://doi.org/10.1016/j.saa.2012.11.046
  • Closed-loop random vibration control of a shaker table with a microcomputer: M. L. Wang, Soil Dynamics & Earthquake Engineering, 13(4), 1994, pp 259–266. (1995). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(1), A24. https://doi.org/https://doi.org/10.1016/0148-9062(95)90179-5
  • Diéguez, P. M., Urroz, J. C., Sáinz, D., Machin, J., Arana, M., & Gandía, L. M. (2018). Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements. Energy Conversion and Management, 172, 67–80. https://doi.org/https://doi.org/10.1016/j.enconman.2018.06.115
  • Fung, R.-F., & Chen, K.-W. (1998). Dynamic Analysis And Vibration Control of A Flexible Slider–Crank Mechanism Using Pin Synchronous Servo Motor Drive. Journal of Sound and Vibration, 214(4), 605–637. https://doi.org/https://doi.org/10.1006/jsvi.1998.1556
  • Geng, Z., & Chen, J. (2005). Investigation into piston-slap-induced vibration for engine condition simulation and monitoring. Journal of Sound and Vibration, 282(3), 735–751. https://doi.org/https://doi.org/10.1016/j.jsv.2004.03.057
  • Geng, Z., Chen, J., & Barry Hull, J. (2003). Analysis of engine vibration and design of an applicable diagnosing approach. International Journal of Mechanical Sciences, 45(8), 1391–1410. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2003.09.012
  • Gharaibeh, M. A., & Pitarresi, J. M. (2019). Random vibration fatigue life analysis of electronic packages by analytical solutions and Taguchi method. Microelectronics Reliability, 102, 113475. https://doi.org/10.1016/j.microrel.2019.113475
  • Gosala, D. B., Raghukumar, H., Allen, C. M., Shaver, G. M., McCarthy, J. E., & Lutz, T. P. (2021). Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration. Control Engineering Practice, 107, 104681. https://doi.org/https://doi.org/10.1016/j.conengprac.2020.104681
  • Haftirman, A. K. R. (2016). Mechanical System Design Lecture Note (Lecture 13) Multicylinder Engines. Jannoun, M., Aoues, Y., Pagnacco, E., Pougnet, P., & El-Hami, A. (2017). Probabilistic fatigue damage estimation of embedded electronic solder joints under random vibration. Microelectronics Reliability, 78, 249–257. https://doi.org/10.1016/j.microrel.2017.08.005
  • Karkoub, M. A. (2000). Control of the elastodynamic vibrations of a flexible slider–crank mechanism using μ-synthesis. Mechatronics, 10(6), 649–668. https://doi.org/https://doi.org/10.1016/S0957-4158(99)00083-5
  • Kihm, F., & Delaux, D. (2013). Vibration Fatigue and Simulation of Damage on Shaker Table Tests: The Influence of Clipping the Random Drive Signal. Procedia Engineering, 66, 549–564. https://doi.org/https://doi.org/10.1016/j.proeng.2013.12.107
  • Liao, H. (2014). Global resonance optimization analysis of nonlinear mechanical systems: Application to the uncertainty quantification problems in rotor dynamics. Communications in Nonlinear Science and Numerical Simulation, 19(9), 3323–3345. https://doi.org/https://doi.org/10.1016/j.cnsns.2014.02.026
  • Liu, X., & Randall, R. B. (2005). Blind source separation of internal combustion engine piston slap from other measured vibration signals. Mechanical Systems and Signal Processing, 19(6), 1196–1208. https://doi.org/https://doi.org/10.1016/j.ymssp.2005.08.004
  • Malík, J. (2013). Sudden lateral asymmetry and torsional oscillations in the original Tacoma suspension bridge. Journal of Sound and Vibration, 332(15), 3772–3789. https://doi.org/https://doi.org/10.1016/j.jsv.2013.02.011
  • Matsumoto, M., Shirato, H., Yagi, T., Shijo, R., Eguchi, A., & Tamaki, H. (2003). Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: the case of Tacoma Narrows Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 91(12), 1547–1557. https://doi.org/https://doi.org/10.1016/j.jweia.2003.09.010
  • Moosavian, A., Najafi, G., Ghobadian, B., & Mirsalim, M. (2017). The effect of piston scratching fault on the vibration behavior of an IC engine. Applied Acoustics, 126, 91–100. https://doi.org/https://doi.org/10.1016/j.apacoust.2017.05.017
  • Moosavian, A., Najafi, G., Ghobadian, B., Mirsalim, M., Jafari, S. M., & Sharghi, P. (2016). Piston scuffing fault and its identification in an IC engine by vibration analysis. Applied Acoustics, 102, 40–48. https://doi.org/https://doi.org/10.1016/j.apacoust.2015.09.002
  • Muhammad, N., Fang, Z., & Shoaib, M. (2020). Remaining useful life (RUL) estimation of electronic solder joints in rugged environment under random vibration. Microelectronics Reliability, 107, 113614. https://doi.org/10.1016/j.microrel.2020.113614
  • Naseri, R., Talebi, H. A., Ohadi, A., & Fakhari, V. (2020). A robust active control scheme for automotive engine vibration based on disturbance observer. ISA Transactions, 100, 13–27. https://doi.org/https://doi.org/10.1016/j.isatra.2019.11.005
  • Plaut, R. H. (2008). Snap loads and torsional oscillations of the original Tacoma Narrows Bridge. Journal of Sound and Vibration, 309(3), 613–636. https://doi.org/https://doi.org/10.1016/j.jsv.2007.07.057
  • Reghu, V. R., Shankar, V., & Ramaswamy, P. (2018). Challenges in Plasma Spraying of 8%Y2O3-ZrO2 Thermal Barrier Coatings on Al Alloy Automotive Piston and Influence of Vibration and Thermal Fatigue on Coating Characteristics. Materials Today: Proceedings, 5(11, Part 3), 23927–23936. https://doi.org/https://doi.org/10.1016/j.matpr.2018.10.185
  • Strozzi, A., Baldini, A., Giacopini, M., Bertocchi, E., & Mantovani, S. (2018). A repertoire of failures in gudgeon pins for internal combustion engines, and a critical assessment of the design formulae. Engineering Failure Analysis, 87, 22–48. https://doi.org/10.1016/j.engfailanal.2018.02.004
  • Trapp, A., & Wolfsteiner, P. (2021). Frequency-domain characterization of varying random vibration loading by a non-stationarity matrix. International Journal of Fatigue, 146, 106115. https://doi.org/10.1016/j.ijfatigue.2020.106115
  • Veciana Fontanet, J. M., Jordi Nebot, L., & Lores Garcia, E. (2021). Residual vibration reduction in back-and-forth moving systems driven by slider-crank mechanisms working through a dead point configuration. Mechanism and Machine Theory, 158, 104239. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.104239
  • Wang, M. L. (1994). Closed-loop random vibration control of a shaker table with a microcomputer. Soil Dynamics and Earthquake Engineering, 13(4), 259–266. https://doi.org/https://doi.org/10.1016/0267-7261(94)90030-2
  • Wu, L., Bi, Y., Shen, L., Lei, J., Zhang, L., & Zhou, F. (2019). Study on the effect of piston skirt profile on the vibration behavior of non-road high pressure common rail diesel engine. Applied Acoustics, 148, 457–466. https://doi.org/https://doi.org/10.1016/j.apacoust.2019.01.007
  • Wyatt, T. A. (1992). Bridge Aerodynamics 50 Years After Tacoma Narrows - Part I: The Tacoma Narrows failure and after. Journal of Wind Engineering and Industrial Aerodynamics, 40(3), 317–326. https://doi.org/https://doi.org/10.1016/S0167-6105(18)80001-0
  • Xu, X. L., & Yu, Z. W. (2010). Failure investigation of a diesel engine piston pin. Journal of Failure Analysis and Prevention, 10(3), 245–248. https://doi.org/10.1007/s11668-010-9343-x
  • Yao, G., & Li, F. (2019). Nonlinear global resonance analysis of an embedded plate interacting with outside subsonic airflow. Communications in Nonlinear Science and Numerical Simulation, 68, 286–301. https://doi.org/https://doi.org/10.1016/j.cnsns.2018.08.010
  • Yu, Z., Xu, X., & Ding, H. (2007). Failure analysis of a diesel engine piston-pin. Engineering Failure Analysis, 14(1), 110–117. https://doi.org/10.1016/j.engfailanal.2005.12.004

Forced Frequency Response Analysis of a Gudgeon Pin

Yıl 2022, Sayı: 41, 373 - 383, 30.11.2022
https://doi.org/10.31590/ejosat.1179755

Öz

In this study, forced frequency response analysis was applied on the gudgeon pin. Ansys Mechanical 19.2 program was used to analyze the vibration on the gudgeon pin. Once completed in the finite element analysis, a note from the modal results, the model's natural frequencies range from 38721 to 79346 Hertz for the first 12 modes. According to the modal analysis results, the gudgeon pin will not be subjected to resonance during working. Therefore, a frequency scan including modal analysis is required to detect resonant frequencies that may coincide with the natural frequencies of the first 12 modes obtained in modal analysis. Consequently, harmonic analysis has been solved using the mode superposition method with 50 intervals with 1000 Hz steps in the range of 30000-80000 Hz. To dampen the resonant frequencies, harmonic analyzes were repeated using six different constant damping ratios, and the results were compared.

Kaynakça

  • Arioli, G., & Gazzola, F. (2015). A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge. Applied Mathematical Modelling, 39(2), 901–912. https://doi.org/https://doi.org/10.1016/j.apm.2014.06.022
  • Binoy, J., Marchewka, M. K., & Jayakumar, V. S. (2013). The ‘partial resonance’ of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO–LUMO and MESP mapping. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 97–109. https://doi.org/https://doi.org/10.1016/j.saa.2012.11.046
  • Closed-loop random vibration control of a shaker table with a microcomputer: M. L. Wang, Soil Dynamics & Earthquake Engineering, 13(4), 1994, pp 259–266. (1995). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(1), A24. https://doi.org/https://doi.org/10.1016/0148-9062(95)90179-5
  • Diéguez, P. M., Urroz, J. C., Sáinz, D., Machin, J., Arana, M., & Gandía, L. M. (2018). Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements. Energy Conversion and Management, 172, 67–80. https://doi.org/https://doi.org/10.1016/j.enconman.2018.06.115
  • Fung, R.-F., & Chen, K.-W. (1998). Dynamic Analysis And Vibration Control of A Flexible Slider–Crank Mechanism Using Pin Synchronous Servo Motor Drive. Journal of Sound and Vibration, 214(4), 605–637. https://doi.org/https://doi.org/10.1006/jsvi.1998.1556
  • Geng, Z., & Chen, J. (2005). Investigation into piston-slap-induced vibration for engine condition simulation and monitoring. Journal of Sound and Vibration, 282(3), 735–751. https://doi.org/https://doi.org/10.1016/j.jsv.2004.03.057
  • Geng, Z., Chen, J., & Barry Hull, J. (2003). Analysis of engine vibration and design of an applicable diagnosing approach. International Journal of Mechanical Sciences, 45(8), 1391–1410. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2003.09.012
  • Gharaibeh, M. A., & Pitarresi, J. M. (2019). Random vibration fatigue life analysis of electronic packages by analytical solutions and Taguchi method. Microelectronics Reliability, 102, 113475. https://doi.org/10.1016/j.microrel.2019.113475
  • Gosala, D. B., Raghukumar, H., Allen, C. M., Shaver, G. M., McCarthy, J. E., & Lutz, T. P. (2021). Model-based design of dynamic firing patterns for supervisory control of diesel engine vibration. Control Engineering Practice, 107, 104681. https://doi.org/https://doi.org/10.1016/j.conengprac.2020.104681
  • Haftirman, A. K. R. (2016). Mechanical System Design Lecture Note (Lecture 13) Multicylinder Engines. Jannoun, M., Aoues, Y., Pagnacco, E., Pougnet, P., & El-Hami, A. (2017). Probabilistic fatigue damage estimation of embedded electronic solder joints under random vibration. Microelectronics Reliability, 78, 249–257. https://doi.org/10.1016/j.microrel.2017.08.005
  • Karkoub, M. A. (2000). Control of the elastodynamic vibrations of a flexible slider–crank mechanism using μ-synthesis. Mechatronics, 10(6), 649–668. https://doi.org/https://doi.org/10.1016/S0957-4158(99)00083-5
  • Kihm, F., & Delaux, D. (2013). Vibration Fatigue and Simulation of Damage on Shaker Table Tests: The Influence of Clipping the Random Drive Signal. Procedia Engineering, 66, 549–564. https://doi.org/https://doi.org/10.1016/j.proeng.2013.12.107
  • Liao, H. (2014). Global resonance optimization analysis of nonlinear mechanical systems: Application to the uncertainty quantification problems in rotor dynamics. Communications in Nonlinear Science and Numerical Simulation, 19(9), 3323–3345. https://doi.org/https://doi.org/10.1016/j.cnsns.2014.02.026
  • Liu, X., & Randall, R. B. (2005). Blind source separation of internal combustion engine piston slap from other measured vibration signals. Mechanical Systems and Signal Processing, 19(6), 1196–1208. https://doi.org/https://doi.org/10.1016/j.ymssp.2005.08.004
  • Malík, J. (2013). Sudden lateral asymmetry and torsional oscillations in the original Tacoma suspension bridge. Journal of Sound and Vibration, 332(15), 3772–3789. https://doi.org/https://doi.org/10.1016/j.jsv.2013.02.011
  • Matsumoto, M., Shirato, H., Yagi, T., Shijo, R., Eguchi, A., & Tamaki, H. (2003). Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: the case of Tacoma Narrows Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 91(12), 1547–1557. https://doi.org/https://doi.org/10.1016/j.jweia.2003.09.010
  • Moosavian, A., Najafi, G., Ghobadian, B., & Mirsalim, M. (2017). The effect of piston scratching fault on the vibration behavior of an IC engine. Applied Acoustics, 126, 91–100. https://doi.org/https://doi.org/10.1016/j.apacoust.2017.05.017
  • Moosavian, A., Najafi, G., Ghobadian, B., Mirsalim, M., Jafari, S. M., & Sharghi, P. (2016). Piston scuffing fault and its identification in an IC engine by vibration analysis. Applied Acoustics, 102, 40–48. https://doi.org/https://doi.org/10.1016/j.apacoust.2015.09.002
  • Muhammad, N., Fang, Z., & Shoaib, M. (2020). Remaining useful life (RUL) estimation of electronic solder joints in rugged environment under random vibration. Microelectronics Reliability, 107, 113614. https://doi.org/10.1016/j.microrel.2020.113614
  • Naseri, R., Talebi, H. A., Ohadi, A., & Fakhari, V. (2020). A robust active control scheme for automotive engine vibration based on disturbance observer. ISA Transactions, 100, 13–27. https://doi.org/https://doi.org/10.1016/j.isatra.2019.11.005
  • Plaut, R. H. (2008). Snap loads and torsional oscillations of the original Tacoma Narrows Bridge. Journal of Sound and Vibration, 309(3), 613–636. https://doi.org/https://doi.org/10.1016/j.jsv.2007.07.057
  • Reghu, V. R., Shankar, V., & Ramaswamy, P. (2018). Challenges in Plasma Spraying of 8%Y2O3-ZrO2 Thermal Barrier Coatings on Al Alloy Automotive Piston and Influence of Vibration and Thermal Fatigue on Coating Characteristics. Materials Today: Proceedings, 5(11, Part 3), 23927–23936. https://doi.org/https://doi.org/10.1016/j.matpr.2018.10.185
  • Strozzi, A., Baldini, A., Giacopini, M., Bertocchi, E., & Mantovani, S. (2018). A repertoire of failures in gudgeon pins for internal combustion engines, and a critical assessment of the design formulae. Engineering Failure Analysis, 87, 22–48. https://doi.org/10.1016/j.engfailanal.2018.02.004
  • Trapp, A., & Wolfsteiner, P. (2021). Frequency-domain characterization of varying random vibration loading by a non-stationarity matrix. International Journal of Fatigue, 146, 106115. https://doi.org/10.1016/j.ijfatigue.2020.106115
  • Veciana Fontanet, J. M., Jordi Nebot, L., & Lores Garcia, E. (2021). Residual vibration reduction in back-and-forth moving systems driven by slider-crank mechanisms working through a dead point configuration. Mechanism and Machine Theory, 158, 104239. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.104239
  • Wang, M. L. (1994). Closed-loop random vibration control of a shaker table with a microcomputer. Soil Dynamics and Earthquake Engineering, 13(4), 259–266. https://doi.org/https://doi.org/10.1016/0267-7261(94)90030-2
  • Wu, L., Bi, Y., Shen, L., Lei, J., Zhang, L., & Zhou, F. (2019). Study on the effect of piston skirt profile on the vibration behavior of non-road high pressure common rail diesel engine. Applied Acoustics, 148, 457–466. https://doi.org/https://doi.org/10.1016/j.apacoust.2019.01.007
  • Wyatt, T. A. (1992). Bridge Aerodynamics 50 Years After Tacoma Narrows - Part I: The Tacoma Narrows failure and after. Journal of Wind Engineering and Industrial Aerodynamics, 40(3), 317–326. https://doi.org/https://doi.org/10.1016/S0167-6105(18)80001-0
  • Xu, X. L., & Yu, Z. W. (2010). Failure investigation of a diesel engine piston pin. Journal of Failure Analysis and Prevention, 10(3), 245–248. https://doi.org/10.1007/s11668-010-9343-x
  • Yao, G., & Li, F. (2019). Nonlinear global resonance analysis of an embedded plate interacting with outside subsonic airflow. Communications in Nonlinear Science and Numerical Simulation, 68, 286–301. https://doi.org/https://doi.org/10.1016/j.cnsns.2018.08.010
  • Yu, Z., Xu, X., & Ding, H. (2007). Failure analysis of a diesel engine piston-pin. Engineering Failure Analysis, 14(1), 110–117. https://doi.org/10.1016/j.engfailanal.2005.12.004
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ekrem Gülsevinçler 0000-0002-4787-6275

Erken Görünüm Tarihi 2 Ekim 2022
Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 41

Kaynak Göster

APA Gülsevinçler, E. (2022). Forced Frequency Response Analysis of a Gudgeon Pin. Avrupa Bilim Ve Teknoloji Dergisi(41), 373-383. https://doi.org/10.31590/ejosat.1179755