Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeraltı Kömür Madenlerinde Grizu Patlamaları İçin Skorlama Tabanlı Risk Değerlendirme Yöntemi Önerisi

Yıl 2022, Sayı: 41, 405 - 409, 30.11.2022
https://doi.org/10.31590/ejosat.1190659

Öz

Madencilik, ölümlü iş kazalarının en fazla olduğu sektörlerden biridir. İstatistiklere göre, bu ölümcül kazaların çoğu metan patlamalarından kaynaklanmaktadır. Patlamanın olabilmesi için metanın belirli bir konsantrasyon oluşturması, yeterli oksijen ve tutuşturucu elementlere ihtiyaç vardır. Metan oluşumunu etkileyebilecek en önemli faktörlerden biri kömürün karbon içeriğidir. Karbon içeriği arttıkça, yanıcı hidrokarbon türevi gaz oluşma olasılığı artar. Gözenekli yapı, metanın birikmesine ve anlık konsantrasyon oluşturmasına neden olan bir faktördür. Ateşleme elemanının oluşumunun yan kayaçların kuvars içeriği ile doğru orantılı olduğu bilinmektedir. Bu çalışmada, tüm bu yan parametrelerin dilsel ifadelerine puan verilerek yeni bir risk değerlendirme yöntemi önerilmiştir. Önerilen bu yöntem, kesin ölçümler ve cebri havalandırma ilkelerinden bağımsız olarak proaktif bir yaklaşım sağlar. Bu doğrultuda alınacak tedbirlerle beklenmeyen sonuçların önüne geçilebileceği öngörülmektedir.

Kaynakça

  • Aydin, G., Kesimal, A. (2007). Investigation of Applicability of Methane Drainage in Coal Mining. Scientific Mining Journal, 46(4), 11-20.
  • Bickerton, J. (2012). The Fire Triangle. Loss Prevention Bulletin, 226, 6-11.
  • Bilim, N., Dundar, S., Bilim, A. (2018). Analysis of Occupational Accidents and Occupational Diseases in the Mining Industry in Our Country. BEU Journal of Science, 7(2), 423-432.
  • Calderon, L.A., Chamorro, E., Espinal, J.F. (2016). Mechanisms for Homogeneous and Heterogeneous Formation of Methane During the Carbon–Hydrogen Reaction Over Zigzag Edge Sites. Carbon, 102, 390-402.
  • CASGEM. (2018). Occupational Accidents in the Mining Industry.
  • Ceylan, H. (2012). Analysis of Occupational Accidents According to The Sectors in Turkey. Gazi University Journal of Science, 25(4), 909-918.
  • Cinar, U., Cebi, S. (2020). A Hybrid Risk Assessment Method for Mining Sector Based on QFD, Fuzzy İnference System, and AHP. Journal of Intelligent and Fuzzy Systems, 39(5), 6047-6058.
  • Dursen, M., Yasun, B. (2012). Harmful Gases and Methane Drainage in Underground Mines. ISGUM, Ankara.
  • Esen, O., Okten, G., Fisne, A. (2017). Evaluation of Sudden Gas and Coal Ejection Incidents in Turkey and Measures to be Taken in Combating the Incidents. Scientific Mining Journal, 56(3), 99-108.
  • ILO (International Labour Office), https://ilostat.ilo.org/
  • Kavaz, I. (2019). Coal in the Axis of Domestic and National Energy Policies. Seta, 265.
  • Kissell, F.N. (2006). Handbook for Methane Control in Mining. National Institute of Occupational Safety and Health.
  • Kowalski-Trakofler, K.M. and Brnich, M.J. (2010). Underground Coal Mine Disasters 1900-2010: Events, Responses, and a Look to the Future. Society of Mining, Metallurgy, and Exploration, 2010 Jan., 363-372.
  • Mevsim, R. (2016). Risk Assessment by Fault Tree Analysis of Methane Explosions in Turkish Hard Coal Enterprises Underground Mines. Master of Science Thesis, Middle East Technical University, Ankara, Turkey.
  • Okten, G., Yazici, S. (1986). The Methane Explosions in Mechanized Excavations. Mining Journal, 25(3), 17-22.
  • Segers, R. (1998). Methane Production and Methane Consumption: A Review of Processes Underlying Wetland Methane Fluxes. Biogeochemistry, 41, 23–51.
  • Tong, M., Wu, G., Hao, J., Dai, X. (2009). Explosion Limits for Combustible Gases. Mining Science and Technology (China), 19(2), 182-184.
  • Yasar, S., Inal, S., Yasar, O., Kaya, S. (2015). Major Mining Accidents from Past to Present. Scientific Mining Journal, 54(2), 33-43.

A Scoring-Based Risk Assessment Method Proposal for Methane Explosions in Underground Coal Mines

Yıl 2022, Sayı: 41, 405 - 409, 30.11.2022
https://doi.org/10.31590/ejosat.1190659

Öz

Mining is one of the sectors with the highest number of fatal occupational accidents. According to statistics, the majority of these fatal accidents are caused by methane explosions. In order for the explosion to occur, methane needs to form a certain concentration, sufficient oxygen and igniting elements are required. One of the most important factors that can affect methane formation is the carbon content of coal. As the carbon content increases, the probability of formation of flammable hydrocarbon-derived gas increases. The porous structure is a factor that causes methane to accumulate and create instantaneous concentration. It is known that the formation of the ignition element is directly proportional to the quartz content of the wall rocks. In this study, a new risk assessment method is proposed by assigning scores to the linguistic expressions of all these side parameters. This proposed method enables a proactive approach regardless of exact measurements and forced ventilation principles. It is foreseen that unexpected results can be prevented with the measures to be taken in this direction.

Kaynakça

  • Aydin, G., Kesimal, A. (2007). Investigation of Applicability of Methane Drainage in Coal Mining. Scientific Mining Journal, 46(4), 11-20.
  • Bickerton, J. (2012). The Fire Triangle. Loss Prevention Bulletin, 226, 6-11.
  • Bilim, N., Dundar, S., Bilim, A. (2018). Analysis of Occupational Accidents and Occupational Diseases in the Mining Industry in Our Country. BEU Journal of Science, 7(2), 423-432.
  • Calderon, L.A., Chamorro, E., Espinal, J.F. (2016). Mechanisms for Homogeneous and Heterogeneous Formation of Methane During the Carbon–Hydrogen Reaction Over Zigzag Edge Sites. Carbon, 102, 390-402.
  • CASGEM. (2018). Occupational Accidents in the Mining Industry.
  • Ceylan, H. (2012). Analysis of Occupational Accidents According to The Sectors in Turkey. Gazi University Journal of Science, 25(4), 909-918.
  • Cinar, U., Cebi, S. (2020). A Hybrid Risk Assessment Method for Mining Sector Based on QFD, Fuzzy İnference System, and AHP. Journal of Intelligent and Fuzzy Systems, 39(5), 6047-6058.
  • Dursen, M., Yasun, B. (2012). Harmful Gases and Methane Drainage in Underground Mines. ISGUM, Ankara.
  • Esen, O., Okten, G., Fisne, A. (2017). Evaluation of Sudden Gas and Coal Ejection Incidents in Turkey and Measures to be Taken in Combating the Incidents. Scientific Mining Journal, 56(3), 99-108.
  • ILO (International Labour Office), https://ilostat.ilo.org/
  • Kavaz, I. (2019). Coal in the Axis of Domestic and National Energy Policies. Seta, 265.
  • Kissell, F.N. (2006). Handbook for Methane Control in Mining. National Institute of Occupational Safety and Health.
  • Kowalski-Trakofler, K.M. and Brnich, M.J. (2010). Underground Coal Mine Disasters 1900-2010: Events, Responses, and a Look to the Future. Society of Mining, Metallurgy, and Exploration, 2010 Jan., 363-372.
  • Mevsim, R. (2016). Risk Assessment by Fault Tree Analysis of Methane Explosions in Turkish Hard Coal Enterprises Underground Mines. Master of Science Thesis, Middle East Technical University, Ankara, Turkey.
  • Okten, G., Yazici, S. (1986). The Methane Explosions in Mechanized Excavations. Mining Journal, 25(3), 17-22.
  • Segers, R. (1998). Methane Production and Methane Consumption: A Review of Processes Underlying Wetland Methane Fluxes. Biogeochemistry, 41, 23–51.
  • Tong, M., Wu, G., Hao, J., Dai, X. (2009). Explosion Limits for Combustible Gases. Mining Science and Technology (China), 19(2), 182-184.
  • Yasar, S., Inal, S., Yasar, O., Kaya, S. (2015). Major Mining Accidents from Past to Present. Scientific Mining Journal, 54(2), 33-43.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ulaş Çınar 0000-0003-3924-0768

Erken Görünüm Tarihi 2 Ekim 2022
Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 41

Kaynak Göster

APA Çınar, U. (2022). A Scoring-Based Risk Assessment Method Proposal for Methane Explosions in Underground Coal Mines. Avrupa Bilim Ve Teknoloji Dergisi(41), 405-409. https://doi.org/10.31590/ejosat.1190659