Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Fiber Yönlenme Açılarının Tabakalı Kompozit Kirişlerin Doğal Frekansına Etkisinin Yanıt Yüzey Metodu ile İncelenmesi

Yıl 2022, Sayı: 43, 48 - 54, 30.11.2022
https://doi.org/10.31590/ejosat.1201793

Öz

Bu çalışma, farklı fiber yönlenme açılarının karbon elyaf takviyeli epoksi tabakalı kompozitlerin doğal frekans değerlerine ne şekilde etki ettiğinin yanıt yüzey metodu (YYM) ile belirlenmesini amaçlamaktadır. Box-Behnken tasarımına (BBT) göre belirlenen 15 adet tasarım konfigürasyonu ile deney tasarımı gerçekleştirilmiştir. ANSYS sonlu elamanlar analizi paket programında deney tasarım noktalarındaki girdi parametrelerine uygun olarak oluşturulan modellerin modal analizleri gerçekleştirilmiştir. Temel frekans değerleri yanıt vektörü olarak elde edilmiştir. Kuadratik regresyon (KR) modelinin kurulması için girdi parametreleri ve bu parametrelere karşılık gelen yanıt verileri kullanılmıştır. Modelin tahmin kabiliyetinin artırılması ve daha basit bir model kurulması amacıyla, istatistiksel olarak anlamsız olan terimler modelden çıkarılmıştır. Varyans analizi (ANOVA) sonuçlarına göre, literatürle uyumlu bir şekilde, dış tabakalardaki fiber yönlenme açılarının yapının doğal frekansına olan etkisinin, tarafsız eksende bulunan merkez tabakaya kıyasla yaklaşık 2 kat daha fazla olduğu hesaplanmıştır. Rastgele tasarım parametrelerinde modellenen 112 adet sonlu elemanlar modeli modal analize tabi tutulmuştur. Titreşim analizi sonuçları kullanılarak makine öğrenmesi tabanlı “Gauss Process Regression” yöntemi ile yeni bir regresyon modeli kurulmuştur. Önerilen bu matematiksel modelin BBT örneklem parametreleri için KR modeline kıyasla yaklaşık 34 kat daha az hata ile tahmin sağlayabildiği belirlenmiştir.

Kaynakça

  • Adali, S., & Verijenko, V. (2001). Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations. Composite structures, 54(2-3), 131-138.
  • Altabey, W. A. (2018). High performance estimations of natural frequency of basalt FRP laminated plates with intermediate elastic support using response surfaces method. Journal of Vibroengineering, 20(2), 1099-1107.
  • Cherniaev, A., & Komarov, V. (2015). Multistep optimization of composite drive shaft subject to strength, buckling, vibration and manufacturing constraints. Applied Composite Materials, 22(5), 475-487.
  • Dagli, B. Y., Ergut, A., & Turan, M. E. (2020). İçinden Akışkan Geçen Boru Doğal Frekansının Genelleştirilmiş Regresyon Yapay Sinir Ağları Yöntemi İle Tahmini. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2), 863-874.
  • de Assis, F. M., & Gomes, G. F. (2021). Crack identification in laminated composites based on modal responses using metaheuristics, artificial neural networks and response surface method: a comparative study. Archive of Applied Mechanics, 91(10), 4389-4408.
  • Fallahi, N. (2021). GA optimization of variable angle tow composites in buckling and free vibration analysis through layerwise theory. Aerospace, 8(12), 376.
  • Ganapathi, M., Kalyani, A., Mondal, B., & Prakash, T. (2009). Free vibration analysis of simply supported composite laminated panels. Composite Structures, 90(1), 100-103.
  • Garg, A., Chalak, H., Zenkour, A., Belarbi, M.-O., & Sahoo, R. (2022). Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin-Walled Structures, 170, 108626.
  • Ghasemi, F. A., Paknejad, R., & Fard, K. M. (2013). Effects of geometrical and material parameters on free vibration analysis of fiber metal laminated plates. Mechanics & Industry, 14(4), 229-238.
  • Jafari, R., Yousefi, P., & Hosseini-Hashemi, S. (2015). Stacking sequence optimization of laminated composite plates for free vibration using genetic algorithm and neural networks. Paper presented at the International conference on advances in mechanical engineering, ICAME.
  • Jeawon, Y., Drosopoulos, G., Foutsitzi, G., Stavroulakis, G., & Adali, S. (2021). Optimization and analysis of frequencies of multi-scale graphene/fibre reinforced nanocomposite laminates with non-uniform distributions of reinforcements. Engineering Structures, 228, 111525.
  • Karakaya, Ş., & Soykasap, Ö. (2011). Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing. Structural and Multidisciplinary Optimization, 43(1), 61-72.
  • Narita, Y. (2003). Layerwise optimization for the maximum fundamental frequency of laminated composite plates. Journal of Sound and Vibration, 263(5), 1005-1016.
  • Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T., & Bui, T. (2018). Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces. Acta Mechanica, 229(12), 4995-5012.
  • Pashmforoush, F. (2019). Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets. Composite Structures, 213, 14-24.
  • Pashmforoush, F. (2022). Natural frequency prediction of functionally graded graphene-reinforced nanocomposite plates using ensemble learning and support vector machine models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 09544062221126641.
  • Pingulkar, P., & Suresha, B. (2016). Free vibration analysis of laminated composite plates using finite element method. Polymers and Polymer Composites, 24(7), 529-538.
  • Reddy, B. S., Reddy, M., & Reddy, V. N. (2013). Vibration analysis of laminated composite plates using design of experimentspproach. International Journal of Scientific Engineering and Technology, 2(1), 40-49.
  • Srinivasa, C. V., Suresh, Y. J., & Prema Kumar, W. P. (2014). Experimental and finite element studies on free vibration of skew plates. International Journal of Advanced Structural Engineering (IJASE), 6(1), 1-11.
  • Şahin, Y. (2006). Kompozit malzemelere giriş (2. Baskı). Ankara: Seçkin Yayıncılık.
  • Thai, H.-T., & Kim, S.-E. (2010). Free vibration of laminated composite plates using two variable refined plate theory. International Journal of Mechanical Sciences, 52(4), 626-633.
  • Todoroki, A., & Ishikawa, T. (2004). Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Composite structures, 64(3-4), 349-357.
  • Zhen, W., & Wanji, C. (2006). Free vibration of laminated composite and sandwich plates using global–local higher-order theory. Journal of Sound and Vibration, 298(1-2), 333-349.

Investigating the Effect of Different Fiber Orientation Angles on the Natural Frequency of Laminated Composite Beams by Response Surface Method

Yıl 2022, Sayı: 43, 48 - 54, 30.11.2022
https://doi.org/10.31590/ejosat.1201793

Öz

This study aims to determine how different fiber orientation angles affect the natural frequency values of carbon fiber reinforced epoxy layered composites by response surface method (RSM). Experimental design was carried out with 15 design configurations determined according to the Box-Behnken Design (BBD). Modal analyzes of the models created in accordance with the input parameters at the experimental design points were carried out in the ANSYS finite element analysis package program. The fundamental frequency values were obtained as the response vector. Input parameters and corresponding response data were used to construct the quadratic regression (QR) model. Statistically insignificant terms were removed from the model in order to increase the predictive ability of the model and to establish a simpler model. According to the analysis of variance (ANOVA) results, in accordance with the literature, the effect of fiber orientation angles in the outer layers on the natural frequency of the structure was calculated to be approximately 2 times higher than in the central layer located in the neutral axis. 112 finite element models modeled in random design parameters were subjected to modal analysis. A new regression model was established with the machine learning-based "Gaussian Process Regression" method using the vibration analysis results. It has been determined that this proposed mathematical model can provide an estimate with approximately 34 times less error for BBD sampling parameters compared to the QR model.

Kaynakça

  • Adali, S., & Verijenko, V. (2001). Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations. Composite structures, 54(2-3), 131-138.
  • Altabey, W. A. (2018). High performance estimations of natural frequency of basalt FRP laminated plates with intermediate elastic support using response surfaces method. Journal of Vibroengineering, 20(2), 1099-1107.
  • Cherniaev, A., & Komarov, V. (2015). Multistep optimization of composite drive shaft subject to strength, buckling, vibration and manufacturing constraints. Applied Composite Materials, 22(5), 475-487.
  • Dagli, B. Y., Ergut, A., & Turan, M. E. (2020). İçinden Akışkan Geçen Boru Doğal Frekansının Genelleştirilmiş Regresyon Yapay Sinir Ağları Yöntemi İle Tahmini. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2), 863-874.
  • de Assis, F. M., & Gomes, G. F. (2021). Crack identification in laminated composites based on modal responses using metaheuristics, artificial neural networks and response surface method: a comparative study. Archive of Applied Mechanics, 91(10), 4389-4408.
  • Fallahi, N. (2021). GA optimization of variable angle tow composites in buckling and free vibration analysis through layerwise theory. Aerospace, 8(12), 376.
  • Ganapathi, M., Kalyani, A., Mondal, B., & Prakash, T. (2009). Free vibration analysis of simply supported composite laminated panels. Composite Structures, 90(1), 100-103.
  • Garg, A., Chalak, H., Zenkour, A., Belarbi, M.-O., & Sahoo, R. (2022). Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin-Walled Structures, 170, 108626.
  • Ghasemi, F. A., Paknejad, R., & Fard, K. M. (2013). Effects of geometrical and material parameters on free vibration analysis of fiber metal laminated plates. Mechanics & Industry, 14(4), 229-238.
  • Jafari, R., Yousefi, P., & Hosseini-Hashemi, S. (2015). Stacking sequence optimization of laminated composite plates for free vibration using genetic algorithm and neural networks. Paper presented at the International conference on advances in mechanical engineering, ICAME.
  • Jeawon, Y., Drosopoulos, G., Foutsitzi, G., Stavroulakis, G., & Adali, S. (2021). Optimization and analysis of frequencies of multi-scale graphene/fibre reinforced nanocomposite laminates with non-uniform distributions of reinforcements. Engineering Structures, 228, 111525.
  • Karakaya, Ş., & Soykasap, Ö. (2011). Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing. Structural and Multidisciplinary Optimization, 43(1), 61-72.
  • Narita, Y. (2003). Layerwise optimization for the maximum fundamental frequency of laminated composite plates. Journal of Sound and Vibration, 263(5), 1005-1016.
  • Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T., & Bui, T. (2018). Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces. Acta Mechanica, 229(12), 4995-5012.
  • Pashmforoush, F. (2019). Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets. Composite Structures, 213, 14-24.
  • Pashmforoush, F. (2022). Natural frequency prediction of functionally graded graphene-reinforced nanocomposite plates using ensemble learning and support vector machine models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 09544062221126641.
  • Pingulkar, P., & Suresha, B. (2016). Free vibration analysis of laminated composite plates using finite element method. Polymers and Polymer Composites, 24(7), 529-538.
  • Reddy, B. S., Reddy, M., & Reddy, V. N. (2013). Vibration analysis of laminated composite plates using design of experimentspproach. International Journal of Scientific Engineering and Technology, 2(1), 40-49.
  • Srinivasa, C. V., Suresh, Y. J., & Prema Kumar, W. P. (2014). Experimental and finite element studies on free vibration of skew plates. International Journal of Advanced Structural Engineering (IJASE), 6(1), 1-11.
  • Şahin, Y. (2006). Kompozit malzemelere giriş (2. Baskı). Ankara: Seçkin Yayıncılık.
  • Thai, H.-T., & Kim, S.-E. (2010). Free vibration of laminated composite plates using two variable refined plate theory. International Journal of Mechanical Sciences, 52(4), 626-633.
  • Todoroki, A., & Ishikawa, T. (2004). Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Composite structures, 64(3-4), 349-357.
  • Zhen, W., & Wanji, C. (2006). Free vibration of laminated composite and sandwich plates using global–local higher-order theory. Journal of Sound and Vibration, 298(1-2), 333-349.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sinan Maraş 0000-0002-2651-374X

Abdullah Tahir Şensoy 0000-0002-9371-8307

Erken Görünüm Tarihi 25 Kasım 2022
Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 43

Kaynak Göster

APA Maraş, S., & Şensoy, A. T. (2022). Farklı Fiber Yönlenme Açılarının Tabakalı Kompozit Kirişlerin Doğal Frekansına Etkisinin Yanıt Yüzey Metodu ile İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(43), 48-54. https://doi.org/10.31590/ejosat.1201793