Araştırma Makalesi
BibTex RIS Kaynak Göster

Co28Cr6Mo Çeliklerin CNC Tornalanmasında Takım Uç Yarıçapının Yüzey Pürüzlüğüne Etkisinin Bulanık Mantıkla Modellenmesi

Yıl 2022, Sayı: 45, 151 - 158, 31.12.2022
https://doi.org/10.31590/ejosat.1223563

Öz

Bu çalışma, Co28Cr6Mo medikal alaşımının CNC tornalamada (devir sayısı, ilerleme hızı, kesme derinliği ve takım uç yarıçapı) kesme parametrelerine bağlı olarak işlenmesi sonucu elde edilen yüzey pürüzlülüğü deneysel değerlerinin bulanık mantıkta modellenmesini içermektedir. Kesilecek malzemenin sertliği ve kullanılan kesici takımın cinsine göre yüzey pürüzlülüğü için en uygun kesme hızı, ilerleme hızı, kesme derinlikleri ve kesici uç yarıçapını belirleyebilen bulanık mantık çözüm modelleri oluşturulmuştur. Bulanık mantık kullanılarak oluşturulan modelde giriş parametreleri ve çıkış parametrelerinin üyelik fonksiyonları, üyelik fonksiyon ayak genişlikleri ve üyelik fonksiyonlarının aralarındaki ilişkiler kullanılarak oluşturulan kural tabanında yapılan deneysel çalışmalardan faydalanılmıştır. Kural tabanında Mamdani yaklaşımıyla üçgen (trimf) üyelik fonksiyonu seçilmiştir. Kurulan model kullanılarak elde edilen sonuçlar, her bir kesme parametresinde 2 ve 3 boyutlu grafiklerle yorumlanmıştır. Bulanık mantıkla kurulan modellerle belirlenen en uygun (optimum) kesme parametreleriyle, malzeme üzerinde iyi bir yüzey kalitesi (minimum yüzey pürüzlülüğü) elde edildiğini söyleyebiliriz.

Kaynakça

  • Y. Kayır, A. Aytürk, ‘’AISI 316 Ti Paslanmaz Çeliğin İşlenebilirlik Karakteristiklerinin İncelenmesi,’’ Pamukkale University Journal of Engineering Sciences, Ankara, 18:61-71, 2012.
  • K. Hashmi, M.A. El Baradie, M. Ryan ‘’Fuzzy-Logic Based Intelligent Selection of Machining Parameters’’, Journal of Materials Processing Technology, Vol. 94, 1999, p. 94-111.
  • C.Y.H. Lim, P.P.T. Lau, S.C. Lim, ‘’The Effects of Work Material on Tool Wear’’, Wear, Vol. 250, 2001, s. 344-348.
  • Özek, M. Sinecen, ‘’Modeling Air Conditioning System Control with Fuzzy Logic’’, Pamukkale University Engineering Faculty Journal of Engineering Sciences, 10(3), 353- 358, 2004.
  • P. Dadone, ‘’Design Optimization of Fuzzy Logic Systems”, Doctor of Philosophy in Electrical Engineering, Virginia Polytechnic Institute and State University, 2001.
  • J. M. Mendel, “Fuzzy Logic Systems for Engineering: A Tutorial”, Proceedings of the IEEE, 83(3), 1995.
  • S.V. Wong, A.M.S. Hamouda, M.A. El Baredie, ‘’Generalized Fuzzy Model For Metal Cutting Data Selection’’, Journal of Materials Processing Technology, Vol. 89-90, 1999, s. 310-317.
  • C. Chungchoo, D. Saini, ‘’On-Line Tool Wear Estimation in CNC Turning Operations Using Fuzzy Neural Network Model’’, International Journal of Machine Tools & Manufacture, Vol. 42, 2002, s. 29-40.
  • R.X. Du, M.A. Elbestawi, S. Li, ‘’Tool Condition Monitoring in Turning Using Fuzzy Set Theory, International Journal of Machine Tools & Manufacture, Vol. 32/6, 1992, s.781.
  • T. Rajasekaran, K. Palanikumar, B.K. Vinayagam, ‘’Application of fuzzy logic modeling surface roughness of turning CFRP composites using CBN tool’’, Springer, Prod. Eng. Res. Devel., (2011) 5: 191-199.
  • A.H. Suhail, N. Ismail, S.V. Wong, Abdul, J.N.A. Abdul, ‘’Cutting parameters identification using multi adaptive network based Fuzzy inference system’’, An artificial intelligence approach. Sci. Res. Essay, 6(1): 187-195.
  • T.J. Ko, D.W. Cho, "Estimation of Tool Wear Length in Finish Milling Using a Fuzzy Inference Algorithm, Wear, Vol. 169, 1993, s. 97.
  • V. Sharma, P. Kumar, J. Misra, ‘’Cutting force predictive modelling of hard turning operation using fuzzy logic’’, Materials Today: Proceedings, (2020), 740-744, 26.
  • B. Bhasker, N. Seetharamaiah, P. Ramesh Babu, S.K. Gugulothu, ‘’Hydrodynamic Bearing Performance Trade-off Study and Fuzzy Based Multi-objective Optimisation on a Offset Surface Textured Journal Bearing, Journal of Bio- and Tribo-Corrosion, (2020), 7:17.
  • S. Rajeswari, P.S. Sivasakthivel, ‘’Optimisation of milling parameters with multi-performance characteristic on Al/SiC metal matrix composite using grey-fuzzy logic algorithm’’, Multidiscipline Modeling in Materials and Structures, (2018), s. 284-305, 14(2).
  • S. Prabhu, Uma M. Uma, B.K. Vinayagam, ‘’Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling’’, J Braz Soc Mech Sci Eng., 36:637–652, (2014).
  • D. Lipinski, W. Kacalak, B. Balasz, ‘’Optimization of sequential grinding process in a fuzzy environment using genetic algorithms’’, J Braz Soc Mech Sci Eng., 41:96, 6, (2019).

Fuzzy Logic Modelling Of The Effect Of Tool Tip Radius On Surface Roughness In Machining Co28Cr6Mo Wrought Steels In CNC Turning

Yıl 2022, Sayı: 45, 151 - 158, 31.12.2022
https://doi.org/10.31590/ejosat.1223563

Öz

This study includes fuzzy logic modeling of surface roughness experimental values obtained as a result of machining Co28Cr6Mo medical alloy in CNC turning (rotational speed (n), feed rate (f), depth of cut (a) and tool tip radius (r)) depending on cutting parameters. According to the hardness of the material to be cut and the type of cutting tool used, fuzzy logic solution models that can determine the most suitable tool tip radius for the surface roughness (Ra) were created. In the model created using fuzzy logic, experimental studies on the rule base created by using the membership functions of the input parameters and the output parameters, the membership function foot widths and the relations between the membership functions were used. Triangle (trimf) membership function was chosen with Mamdani approach on the rule base. The results obtained using the established model are interpreted with 2 and 3 dimensional graphics for tool tip radius. We can say that a good surface quality (minimum surface roughness) is obtained on the material with the most suitable (optimal) tool tip radius determined by models established with fuzzy logic.

Kaynakça

  • Y. Kayır, A. Aytürk, ‘’AISI 316 Ti Paslanmaz Çeliğin İşlenebilirlik Karakteristiklerinin İncelenmesi,’’ Pamukkale University Journal of Engineering Sciences, Ankara, 18:61-71, 2012.
  • K. Hashmi, M.A. El Baradie, M. Ryan ‘’Fuzzy-Logic Based Intelligent Selection of Machining Parameters’’, Journal of Materials Processing Technology, Vol. 94, 1999, p. 94-111.
  • C.Y.H. Lim, P.P.T. Lau, S.C. Lim, ‘’The Effects of Work Material on Tool Wear’’, Wear, Vol. 250, 2001, s. 344-348.
  • Özek, M. Sinecen, ‘’Modeling Air Conditioning System Control with Fuzzy Logic’’, Pamukkale University Engineering Faculty Journal of Engineering Sciences, 10(3), 353- 358, 2004.
  • P. Dadone, ‘’Design Optimization of Fuzzy Logic Systems”, Doctor of Philosophy in Electrical Engineering, Virginia Polytechnic Institute and State University, 2001.
  • J. M. Mendel, “Fuzzy Logic Systems for Engineering: A Tutorial”, Proceedings of the IEEE, 83(3), 1995.
  • S.V. Wong, A.M.S. Hamouda, M.A. El Baredie, ‘’Generalized Fuzzy Model For Metal Cutting Data Selection’’, Journal of Materials Processing Technology, Vol. 89-90, 1999, s. 310-317.
  • C. Chungchoo, D. Saini, ‘’On-Line Tool Wear Estimation in CNC Turning Operations Using Fuzzy Neural Network Model’’, International Journal of Machine Tools & Manufacture, Vol. 42, 2002, s. 29-40.
  • R.X. Du, M.A. Elbestawi, S. Li, ‘’Tool Condition Monitoring in Turning Using Fuzzy Set Theory, International Journal of Machine Tools & Manufacture, Vol. 32/6, 1992, s.781.
  • T. Rajasekaran, K. Palanikumar, B.K. Vinayagam, ‘’Application of fuzzy logic modeling surface roughness of turning CFRP composites using CBN tool’’, Springer, Prod. Eng. Res. Devel., (2011) 5: 191-199.
  • A.H. Suhail, N. Ismail, S.V. Wong, Abdul, J.N.A. Abdul, ‘’Cutting parameters identification using multi adaptive network based Fuzzy inference system’’, An artificial intelligence approach. Sci. Res. Essay, 6(1): 187-195.
  • T.J. Ko, D.W. Cho, "Estimation of Tool Wear Length in Finish Milling Using a Fuzzy Inference Algorithm, Wear, Vol. 169, 1993, s. 97.
  • V. Sharma, P. Kumar, J. Misra, ‘’Cutting force predictive modelling of hard turning operation using fuzzy logic’’, Materials Today: Proceedings, (2020), 740-744, 26.
  • B. Bhasker, N. Seetharamaiah, P. Ramesh Babu, S.K. Gugulothu, ‘’Hydrodynamic Bearing Performance Trade-off Study and Fuzzy Based Multi-objective Optimisation on a Offset Surface Textured Journal Bearing, Journal of Bio- and Tribo-Corrosion, (2020), 7:17.
  • S. Rajeswari, P.S. Sivasakthivel, ‘’Optimisation of milling parameters with multi-performance characteristic on Al/SiC metal matrix composite using grey-fuzzy logic algorithm’’, Multidiscipline Modeling in Materials and Structures, (2018), s. 284-305, 14(2).
  • S. Prabhu, Uma M. Uma, B.K. Vinayagam, ‘’Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling’’, J Braz Soc Mech Sci Eng., 36:637–652, (2014).
  • D. Lipinski, W. Kacalak, B. Balasz, ‘’Optimization of sequential grinding process in a fuzzy environment using genetic algorithms’’, J Braz Soc Mech Sci Eng., 41:96, 6, (2019).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlhan Asiltürk 0000-0002-8302-6577

Mehmet Alper İnce 0000-0003-4457-9520

Erken Görünüm Tarihi 31 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 45

Kaynak Göster

APA Asiltürk, İ., & İnce, M. A. (2022). Fuzzy Logic Modelling Of The Effect Of Tool Tip Radius On Surface Roughness In Machining Co28Cr6Mo Wrought Steels In CNC Turning. Avrupa Bilim Ve Teknoloji Dergisi(45), 151-158. https://doi.org/10.31590/ejosat.1223563