Araştırma Makalesi
BibTex RIS Kaynak Göster

Konumsal İzomerizmin Etkilerine İlişkin Teorik Görüşler: DFT/TD-DFT Yaklaşımı

Yıl 2023, Sayı: 52, 122 - 135, 15.12.2023

Öz

Fonksiyonel grupların veya sübstitüentlerin aynı karbon iskeletinde farklı konumları işgal etmesiyle konumsal izomerizm olgusu ortaya çıkmaktadır. Moleküler formül aynı kaldığı halde molekül içindeki atomların dizilişi farklıdır. Bu durum fiziksel ve kimyasal özelliklerde farklılıklara yol açar. Bu bağlamda, mevcut çalışma, 3-formilasetilasetonun orto-, meta- ve para-aminobenzoik asitlerle etkileşiminden elde edilen üç izomerin (1-3) özelliklerinin hesaplamalı kimya yöntemleri kullanılarak incelenmesini amaçlamaktadır. Konumsal izomerinin, termodinamik parametreler, fizikokimyasal büyüklükler, reaktivite indisleri, elektrostatik yüzey özellikleri ve molekül içi etkileşimler üzerindeki etkilerini araştırmak için Yoğunluk Fonksiyonel Teorisi (YFT) çalışması yapıldı. Ayrıca, temel ve uyarılmış durum özelliklerini incelemek için TD-DFT yöntemi kullanılmıştır. Her üç izomerin hesaplanan ∆E (toplam enerji), ∆H (entalpi) ve ∆G (Gibbs serbest enerjisi) değerlerinde kaydadeğer değişikler gözlenmemiştir. Buna karşın, sınır moleküler orbital analizi sonucunda kuantum kimyasal reaktivite tanımlayıcılarının farklılık gösterdiği belirlenmiştir.

Kaynakça

  • Aadhityan A., Preferencial Kala C., John Thiruvadigal D (2021). Theoretical investigation of spin-dependent electron transport properties of dibromobenzene based positional isomers, Computational Materials Science, 187, 110109.
  • Adamo C., Jacquemin D. (2013). The calculations of excited-state properties with time-dependent density functional theory, Chemical Society Reviews, 42, 845–856. https://doi.org/10.1039/C2CS35394F
  • Ardakani A. A., Kargar H., Feizi N., Tahir M. N. (2018). Synthesis, characterization, crystal structures and antibacterial activities of some Schiff bases with N2O2 donor sets, Journal of Iranian Chemical Society, 15, 1495–1504. http://dx.doi.org/10.1007/s13738-018-1347-6
  • Becke A.D. (1993). A new mixing of Hartree–Fock and local density‐functional theories, Journal of Chemical Physics, 98, 1372–1377. https://doi.org/10.1063/1.464304.
  • Becke A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913
  • Casida M.E., Jamorski C., Casida K.C., Salahub D.R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold, Journal of Chemical Physics, 108, 4439–4449. https://doi.org/10.1063/1.475855.
  • Chen F., Wang Y., Song S., Wang K., Zhang, Q. (2023). Impact of Positional Isomerism on Melting Point and Stability in New Energetic Melt-Castable Materials, Journal of Physical Chemistry. 127, 8887−8893 https://doi.org/10.1021/acs.jpcc.3c01554
  • Dennington R., Keith T.A., Millam J.M. (2016). GaussView, Version 6 Semichem Inc., Shawnee Mission, KS. Eliel E. L., Wilen, S. H. Stereochemistry of Organic Compounds, 1st ed.; Wiley-Interscience: New York, 1994.
  • Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G.E. et.al. (2016). Gaussian 16 Rev. B.01, Wallingford, CT.
  • Gazquez, J. L., Cedillo, A., Vela, A. (2007). Electrodonating and electroaccepting powers, Journal of Physical Chemistry A, 111(10), 1966-1970. https://doi.org/10.1021/jp065459f
  • Gogoi H. P., Singh A., Barman P., Choudhury D. (2022). A new potential ONO Schiff-Base ligand and its Cu(II), Zn(II) and Cd(II) complexes: Synthesis, structural elucidation, theoretical and bioactivity studies, Inorganic Chemistry Communications, 146, 110153. https://doi.org/10.1016/j.inoche.2022.110153
  • Gomez, B., Likhanova, N. V., Domínguez-Aguilar, M. A., Martínez-Palou, R., Vela, A., Gazquez, J. L. (2006). Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles, Journal of Physical Chemistry B, 110(18), 8928-8934. https://doi.org/10.1021/jp057143y
  • Halz J. H., Hentsch A., Wagner C., Merzweiler K. (2022). Synthesis and crystal structures of three Schiff bases derived from 3-formylacetylacetone and o-, m- and p-aminobenzoic acid Acta Crystallographica Section E: Crystallographic Communications, E78, 54–59. https://doi.org/10.1107/S2056989021013050
  • Herzberg G. (1964). Molecular Spectra and Molecular Structure III, 1. Edition, D. Van Nostrand Company, Inc., New York.
  • Hill T. L. (1962). An Introduction to Statistical Thermodynamics, Addison- Wesley Publishing, Inc, London.
  • Koopmans T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1–6, 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Lee C., Yang W., Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Marenich A.V., Cramer C.J., Truhlar D.G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, Journal of Physical Chemistry B., 113 (18), 6378-6396. https://doi.org/10.1021/jp810292n
  • McQuarrie D.A. (1973). Statistical Thermodynamics, Harper & Row Publishers, New York.
  • Niu M., Cao Z., Xue R., Wang S., Dou J., Wang D. (2011). Structural diversity of Cu(II) compounds of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and a series of aminobenzoic acid, Journal of Molecular Structure, 996, 101–109. http://dx.doi.org/10.1016/j.molstruc.2011.04.025
  • O’Boyle N. M., Tenderholt A. L. Langer K. M. (2008). Cclib: a library for package-independent computational chemistry algorithms, Journal of computational chemistry, 29 (5), 839-45. https://doi.org/10.1002/jcc.20823
  • Parr R.G. (1999). Electrophilicity index, Journal of American Chemical Society, 121,1922-1924. https://doi.org/10.1021/ja983494x
  • Parr R.G., Pearson R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity, Journal of American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
  • Pearson R.G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences of the United States of America, 83, 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  • Perdew J.P., Levy M. (1983). Physical content of the exact kohn-sham orbital energies: band gaps and derivative discontinuities, Physical Review Letters, 51, 1884-1887. https://doi.org/10.1103/PhysRevLett.51.1884
  • Perdew J.P., Parr R.G., Levy M., Balduz J.L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the energy, Physical Review Letters, 49, 1691. https://doi.org/10.1103/PhysRevLett.49.1691.
  • Reed A.E., Curtiss L.A., Weinhold F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews. 88(6), 899-926, https://doi.org/10.1021/cr00088a005.
  • Scalmani G., Frisch M.J., Mennucci B., Tomasi J., Cammi R., Barone V. (2006). Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model, Journal of Chemical Physics, 124, 1–15. https://doi.org/10.1063/1.2173258.
  • Serdaroğlu G., Durmaz S. (2010). DFT and statistical mechanics entropy calculations of diatomic and polyatomic molecules, Indian Journal of Chemistry, 49, 861–866.
  • Singh A., Gogoi H. P., Barman P. (2022). Comparative study of palladium (II) complexes bearing tridentate ONS and NNS Schiff base ligands: Synthesis, characterization, DFT calculation, DNA binding, bioactivities, catalytic activity, and molecular docking, Polyhedron, 115895. https://doi.org/10.1016/j.poly.2022.115895
  • Sundaraganesan N., Ilakiamani S., Salem H., Wojciechowski P.M., Michalska D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2995–3001. https://doi.org/10.1016/j.saa.2004.11.016.
  • Tadele K.T., Tsega T.W. (2019). Schiff Bases and their metal complexes as potential anticancer candidates: a review of recent works, Anti-Cancer Agents Med, Chem. (Formerly Curr. Med. Chem. Agents), 19 1786–1795. http://dx.doi.org/10.2174/1871520619666190227171716
  • Van Caillie C., Amos R.D. (1999). Geometric derivatives of excitation energies using SCF and DFT, Chemical Physics Letters, 308, 249–255. https://doi.org/10.1016/S0009-2614(99)00646-6.
  • Vyas A., Koshti R.R., Patel H.N., Sangani C.B., Prajapati A.K., Yao Y., Duan, Y.T. (2022). Mesomorphic behaviour, optical and quantum computational study:Effect of electron density on newly synthesized liquid crystalline positional isomers, Journal of Molecular Liquids, 349, 118142. https://doi.org/10.1016/j.molliq.2021.118142
  • Weinhold F., Landis C.R., Glendening E.D. (2016). What is NBO analysis and how is it useful, International Reviews in Physical Chemistry, 35, 399-440. https://doi.org/10.1080/0144235X.2016.1192262.
  • Yin H., Liu H., Hong M. (2012). Synthesis, structural characterization and DNA-binding properties of organotin(IV) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3- or 4-aminobenzoic acid, Journal of Organometallic Chemistry, 713, 11-19. http://dx.doi.org/10.1016/j.jorganchem.2012.03.027

Theoretical Insights into the Effects of Positional Isomerism: DFT/TD-DFT Approach

Yıl 2023, Sayı: 52, 122 - 135, 15.12.2023

Öz

The phenomenon of positional isomerism arises when functional groups or substituents occupy different positions in the same carbon skeleton. Although the molecular formula remains the same, the arrangement of atoms in the molecule is different. This leads to differences in physical and chemical properties. In this context, the present study aims to investigate the properties of the three isomers (1-3) obtained from the interaction of 3-formylacetylacetone with ortho-, meta- and para-aminobenzoic acids using computational chemistry methods. Density Functional Theory (DFT) study was carried out to explore the effects of positional isomerism on thermodynamic parameters, physicochemical quantities, reactivity indices, electrostatic surface properties and intramolecular interactions. Also, the TD-DFT method was used in order to examine ground and excited state characteristics. No significant changes were observed in the computed ∆E (total energy), ∆H (enthalpy), and ∆G (Gibbs free energy) values of all three isomers. On the other hand, as a result of the frontier molecular orbital analysis, it was determined that the quantum chemical reactivity descriptors differed.

Teşekkür

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Kaynakça

  • Aadhityan A., Preferencial Kala C., John Thiruvadigal D (2021). Theoretical investigation of spin-dependent electron transport properties of dibromobenzene based positional isomers, Computational Materials Science, 187, 110109.
  • Adamo C., Jacquemin D. (2013). The calculations of excited-state properties with time-dependent density functional theory, Chemical Society Reviews, 42, 845–856. https://doi.org/10.1039/C2CS35394F
  • Ardakani A. A., Kargar H., Feizi N., Tahir M. N. (2018). Synthesis, characterization, crystal structures and antibacterial activities of some Schiff bases with N2O2 donor sets, Journal of Iranian Chemical Society, 15, 1495–1504. http://dx.doi.org/10.1007/s13738-018-1347-6
  • Becke A.D. (1993). A new mixing of Hartree–Fock and local density‐functional theories, Journal of Chemical Physics, 98, 1372–1377. https://doi.org/10.1063/1.464304.
  • Becke A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913
  • Casida M.E., Jamorski C., Casida K.C., Salahub D.R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold, Journal of Chemical Physics, 108, 4439–4449. https://doi.org/10.1063/1.475855.
  • Chen F., Wang Y., Song S., Wang K., Zhang, Q. (2023). Impact of Positional Isomerism on Melting Point and Stability in New Energetic Melt-Castable Materials, Journal of Physical Chemistry. 127, 8887−8893 https://doi.org/10.1021/acs.jpcc.3c01554
  • Dennington R., Keith T.A., Millam J.M. (2016). GaussView, Version 6 Semichem Inc., Shawnee Mission, KS. Eliel E. L., Wilen, S. H. Stereochemistry of Organic Compounds, 1st ed.; Wiley-Interscience: New York, 1994.
  • Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G.E. et.al. (2016). Gaussian 16 Rev. B.01, Wallingford, CT.
  • Gazquez, J. L., Cedillo, A., Vela, A. (2007). Electrodonating and electroaccepting powers, Journal of Physical Chemistry A, 111(10), 1966-1970. https://doi.org/10.1021/jp065459f
  • Gogoi H. P., Singh A., Barman P., Choudhury D. (2022). A new potential ONO Schiff-Base ligand and its Cu(II), Zn(II) and Cd(II) complexes: Synthesis, structural elucidation, theoretical and bioactivity studies, Inorganic Chemistry Communications, 146, 110153. https://doi.org/10.1016/j.inoche.2022.110153
  • Gomez, B., Likhanova, N. V., Domínguez-Aguilar, M. A., Martínez-Palou, R., Vela, A., Gazquez, J. L. (2006). Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles, Journal of Physical Chemistry B, 110(18), 8928-8934. https://doi.org/10.1021/jp057143y
  • Halz J. H., Hentsch A., Wagner C., Merzweiler K. (2022). Synthesis and crystal structures of three Schiff bases derived from 3-formylacetylacetone and o-, m- and p-aminobenzoic acid Acta Crystallographica Section E: Crystallographic Communications, E78, 54–59. https://doi.org/10.1107/S2056989021013050
  • Herzberg G. (1964). Molecular Spectra and Molecular Structure III, 1. Edition, D. Van Nostrand Company, Inc., New York.
  • Hill T. L. (1962). An Introduction to Statistical Thermodynamics, Addison- Wesley Publishing, Inc, London.
  • Koopmans T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1–6, 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Lee C., Yang W., Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Marenich A.V., Cramer C.J., Truhlar D.G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, Journal of Physical Chemistry B., 113 (18), 6378-6396. https://doi.org/10.1021/jp810292n
  • McQuarrie D.A. (1973). Statistical Thermodynamics, Harper & Row Publishers, New York.
  • Niu M., Cao Z., Xue R., Wang S., Dou J., Wang D. (2011). Structural diversity of Cu(II) compounds of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and a series of aminobenzoic acid, Journal of Molecular Structure, 996, 101–109. http://dx.doi.org/10.1016/j.molstruc.2011.04.025
  • O’Boyle N. M., Tenderholt A. L. Langer K. M. (2008). Cclib: a library for package-independent computational chemistry algorithms, Journal of computational chemistry, 29 (5), 839-45. https://doi.org/10.1002/jcc.20823
  • Parr R.G. (1999). Electrophilicity index, Journal of American Chemical Society, 121,1922-1924. https://doi.org/10.1021/ja983494x
  • Parr R.G., Pearson R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity, Journal of American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
  • Pearson R.G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences of the United States of America, 83, 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  • Perdew J.P., Levy M. (1983). Physical content of the exact kohn-sham orbital energies: band gaps and derivative discontinuities, Physical Review Letters, 51, 1884-1887. https://doi.org/10.1103/PhysRevLett.51.1884
  • Perdew J.P., Parr R.G., Levy M., Balduz J.L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the energy, Physical Review Letters, 49, 1691. https://doi.org/10.1103/PhysRevLett.49.1691.
  • Reed A.E., Curtiss L.A., Weinhold F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews. 88(6), 899-926, https://doi.org/10.1021/cr00088a005.
  • Scalmani G., Frisch M.J., Mennucci B., Tomasi J., Cammi R., Barone V. (2006). Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model, Journal of Chemical Physics, 124, 1–15. https://doi.org/10.1063/1.2173258.
  • Serdaroğlu G., Durmaz S. (2010). DFT and statistical mechanics entropy calculations of diatomic and polyatomic molecules, Indian Journal of Chemistry, 49, 861–866.
  • Singh A., Gogoi H. P., Barman P. (2022). Comparative study of palladium (II) complexes bearing tridentate ONS and NNS Schiff base ligands: Synthesis, characterization, DFT calculation, DNA binding, bioactivities, catalytic activity, and molecular docking, Polyhedron, 115895. https://doi.org/10.1016/j.poly.2022.115895
  • Sundaraganesan N., Ilakiamani S., Salem H., Wojciechowski P.M., Michalska D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 2995–3001. https://doi.org/10.1016/j.saa.2004.11.016.
  • Tadele K.T., Tsega T.W. (2019). Schiff Bases and their metal complexes as potential anticancer candidates: a review of recent works, Anti-Cancer Agents Med, Chem. (Formerly Curr. Med. Chem. Agents), 19 1786–1795. http://dx.doi.org/10.2174/1871520619666190227171716
  • Van Caillie C., Amos R.D. (1999). Geometric derivatives of excitation energies using SCF and DFT, Chemical Physics Letters, 308, 249–255. https://doi.org/10.1016/S0009-2614(99)00646-6.
  • Vyas A., Koshti R.R., Patel H.N., Sangani C.B., Prajapati A.K., Yao Y., Duan, Y.T. (2022). Mesomorphic behaviour, optical and quantum computational study:Effect of electron density on newly synthesized liquid crystalline positional isomers, Journal of Molecular Liquids, 349, 118142. https://doi.org/10.1016/j.molliq.2021.118142
  • Weinhold F., Landis C.R., Glendening E.D. (2016). What is NBO analysis and how is it useful, International Reviews in Physical Chemistry, 35, 399-440. https://doi.org/10.1080/0144235X.2016.1192262.
  • Yin H., Liu H., Hong M. (2012). Synthesis, structural characterization and DNA-binding properties of organotin(IV) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3- or 4-aminobenzoic acid, Journal of Organometallic Chemistry, 713, 11-19. http://dx.doi.org/10.1016/j.jorganchem.2012.03.027
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hesaplamalı Kimya
Bölüm Makaleler
Yazarlar

Sümeyya Serin 0000-0002-4637-1734

Öznur Doğan Ulu 0000-0002-5561-227X

Erken Görünüm Tarihi 5 Aralık 2023
Yayımlanma Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 52

Kaynak Göster

APA Serin, S., & Doğan Ulu, Ö. (2023). Theoretical Insights into the Effects of Positional Isomerism: DFT/TD-DFT Approach. Avrupa Bilim Ve Teknoloji Dergisi(52), 122-135.