BibTex RIS Kaynak Göster

A Review on Thermal Energy Storage Systems with Phase Change Materials in Vehicles

Yıl 2012, Cilt: 2 Sayı: 1, 1 - 14, 31.05.2012

Öz

Kaynakça

  • Fig.9 . Location of E&PR surrounded with PCM on the system (I, II, III, IV, V, and VI show temperature
  • measument points). (Gumus and Ugurlu, 2011) Conclusion
  • A review of TES systems using solid-liquid phase change materials in vehicles has been carried out. All
  • information used in this review was divided into three parts: PCMs, suitable fields for thermal storage in
  • vehicles and some major applications. Materials used by researchers as potential PCMs are briefly described,
  • together with their thermo physical properties. Suitable fields for thermal storage in vehicles have been given.
  • Different methods of TES systems with PCMs in automobile applications are discussed. Many applications of
  • PCMs can be found, divided in pre-heating of engines, pre-heating of catalytic converters, pre-heating of
  • evaporator and pressure regulator of LPG, thermal comfort of passenger compartment, cooling of engines, and
  • others. First three of those applications are detailed in this review. There are the wide range applications of PCMs, changing from heat and coolness storage in passenger
  • compartment to thermal storage in engines, catalytic converters, and other sections of automobiles. Many
  • more applications are yet to be discovered by researchers.
  • Vasiliev, L.L., Burak, V.S., Kulakov, A.G., Mishkinis, D.A., and Bohan, P.V. (2000). Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine. Appl. Therm. Eng., 20, 913- 923.
  • Wentworth, J.T. (1968). Piston ring variables aspect exhaust hydrocarbon emissions. Proceedings of Conference of Society of Automotive Engineers (SAE), Warrendale, PA, Paper 680109.
  • Boam, D.J. (1986). Energy audit on a two-litre saloon car driving an ECE 15 from a cold start. Automobile Engng., 200, 66-67.
  • Vasiliev, L.L., Burak, V.S., Kulakov, A.G., Mishkinis, D.A., and Bohan, P.V. (1999). Heat storage device for pre- heating internal combustion engines at start-up. Int. J. Therm. Sci., 38, 98-104.
  • Schatz, O. (1992). Cold-start improvements with latent heat store. Automotive Engng J., February, 58-61.
  • Bridgegate Ltd. (Authorized dealership of BMW (GB) Ltd Chesterfield). (1996). Internal technology document, 1- 4.
  • Malatidis, N. (1988). Warmespeicher insbesondere Latentwarmespeicher für Kraftfahrzeuge. Patent DE 39 90 275 C 1.
  • Blüher, P. (1991). Latentwarmespeicher erhöht den fahrkomfort und die fahrsicherheit. ATZ Automobiltechnische Zeitschrift, 93, 3-8.
  • Burch, S.D., Potter, T.F., Keyser, M.A., Brady, M.J., and Michaels, K.F. (1995). Reducing cold start emissions by catalytic converter thermal management. SAE Technical Paper, 950409.
  • Burch, S.D., Keyser, M.A., Colucci, C.P., Potter, T.F., Benson, D.K., and Biel, J.P. (1996). Applications and benefits of catalytic converter thermal management. SAE Technical Paper, 961134.
  • Korin, E., Reshef, R., Tsernichovesky, D., and Sher, E. (1998). Improving cold-start functioning of catalytic converters by using phase-change materials. SAE Technical Paper, 980671.
  • Schatz, O. (1992). Cold-start improvements with latent heat store. SAE Technical Paper, 910305.
  • Gumus, M. (2009). Reducing cold-start emission from internal combustion engines by means of thermal energy storage system. Appl. Therm. Eng., 29, 652-660.
  • Gumus, M., and Ugurlu, A. (2011). Application of phase change materials to pre-heating of evaporator and pressure regulator of a gaseous sequential injection system. Applied Energy, 88(12), 4803-4810.
  • Boam, DJ. (1986). Energy audit on a two-litre saloon car driving an ECE 15 from a cold start. Automob Eng, 200, 66-73.
  • Darkwa, K., and O’Callaghan, P.W. (1997). Green transport technology (GTT): analytical studies of a thermochemical store for minimizing energy consumption and air pollution from automobile engines. Appl. Therm. Eng., 17, 603-614.
  • Felix, R.A., Solanki, S.C., and Saini, J.S. (2006). Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew. Energy. 31, 2025-2041.
  • Shanmugasundaram, V., Brown, J.R., and Yerkes, K.L. (1997). Thermal management of high heat-flux sources using phase change materials: a design optimization procedure. AIAA, 2451-2457.
  • Wang, X.Q., Yap, C., and Mujumdar, A.S. (2008). A parametric study of phase change material (PCM)-based heat sinks. Int J Therm Sci, 47, 1055-1068.
  • Zalba, B., Marin, J.M., Cabeza, L.F., and Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23, 251-283.
  • Korin, E., Reshef, R., Tshernichovesky, D., and Sher, E. (1999). Reducing cold-start emission from internal combustion engines by means of a catalytic converter embedded in a phase-change material. London: Proceedings of the Institution of Mechanical Engineers.
  • Farid, M.M., Khudhair, A.M., Razack, S.A.K., and Hallaj, S.A. (2004). A review on phase change energy storage: materials and applications. Energy Convers. Manage., 45, 1597-1615.
  • Pulkrabek, W.W. (1997). Engineering fundamentals of the internal combustion engine. New Jersey: Prentice Hall.
  • Vakilaltojjar, S.M., and Saman, W. (2001). Analysis and modelling of a phase change storage system for air conditioning applications. Appl. Thermal Eng., 21, 249-263.
  • Vakilaltojjar, S.M., and Saman, W. (2000). Domestic heating and cooling with thermal storage. Proceedings of Terrastock 2000, Stuttgart (Germany), 381-386.
  • Bruno, F., and Saman, W. (2002). Testing of a PCM energy storage system for space heating. Proceedings of the World Renewable Energy Congress WII, Cologne (Germany).
  • Omer, S.A., Riffat, S.B., and Ma, X. (2001). Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons). Appl. Thermal Eng., 21, 1265-1271.
  • Riffat, S.B., Omer, S.A., and Ma, X. (2001). A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation, Renew. Energy, 23, 313-323.
  • Ismail, K.A.R., and Henryquez, J.R. (2001). Thermally effective windows with moving phase change material curtains. Appl. Thermal Eng., 21, 1909-1923.
  • Ismail, K.A.R., and Henryquez, J.R. (2002). Parametric study on composite and PCM glass systems. Energy Convers. Mgmt., 43, 973-993.
  • Merker, O., Hepp, V., Beck, A., and Fricke, J. (2002). A new PCM-shading system: a study of the thermal charging and discharging process. Proceedings of Eurosun 2002, Bologna (Italy).
  • Merker, O., Hepp, V., Beck, A., and Fricke, J. (2002). A new solar shading system with phase change material (PCM). Proceedings of the World Renewable Energy Congress WII, Cologne (Germany).
  • Strahle, R., Stephan, B., and Streicher, B. (1997). Heat accumulator for a motor vehicle. Patent WO 97/06972.
  • Zobel, W., Strahle, R., Stolz, A., Horz, S., Jantschek, T., Van Hoof, H.T.C., De Vuono, A.C., Herrick, R.S., Larrabee, S.R., Logic, J.A., Meissner, A.P., Rogers, J.C., and Voss, M.G. (1999). Heat battery. Patent EP 0 916 918 A2.
  • Kniep, R. (1995). Latentwarmespeicher in Kraftfahrzeugen. Speichersalze im Blickpunkt, GIT Fachzeischrift faur das Laboratorium, 39, 1137-1141.
  • Heck, E., Muller, P., and Sebbesse, W. (1994). Latentwarmespeicher zur Verkaurzung des Motorwarmlaufs. MTZ Motortechnische Zeitschrift, 55, 2-8.
  • Socha, L., Heibel, A., Kessler, B., Rieck, J., Mitchell, G. (1998). Performance of different cell structure converters - a total systems perspective. SAE Technical Paper, 982634.
  • Kirchner, T., and Eigenberger, G. (1996). Optimization of the cold-start behaviour of automotive catalysts using an electrically heated pre-catalyst. Chem. Eng. Sci., 51, 2409-2418.
  • Golben, P.M., DaCosta, D., and Sandrock, G. (1997). Hydride based cold-start heater for automotive catalyst. J Alloys Compd, 253, 686-688.
  • Roychoudhury, S., Muench, G., Bianchi, J., Pfefferie, W., and Gonzales, F. (1997). Development and performance of microlith™ light-off preconverters for LEV/ULEV. SAE Technical Paper, 971023.
  • Karkanis, A.N., Botsaris, P.N., and Sparis, P.D. (2003). Emission reduction during cold start via catalyst surface control. Proc. Inst. Mech. Eng. Part D - J Automob. Eng., 218, 333-340.
  • Jeong, S.J., and Kim, W.S. (2001). A new strategy for improving the warm-up performance of a light-off auto- catalyst for reducing cold-start emissions. Proc. Inst. Mech. Eng. Part D - J Automob. Eng., 215, 1179- 1196.
  • Karthik, R., West, D.H., and Balakotaiah, V. (2004). Optimal design of catalytic converters for minimizing cold- start emissions. Catal. Today, 98, 357-373.
  • Burch, S.D., Potter, T.F., Keyser, M.A., Brady, M.J., and Michaels, K.F. (1995). Reducing cold start emissions by catalytic converter thermal management. SAE Technical Paper, 950409.
  • Burch, S.D., Keyser, M.A., Colucci, C.P., Potter, T.F., Benson, D.K., and Biel, J.P. (1996). Applications and benefits of catalytic converter thermal management. SAE Technical Paper, 961134.
  • Korin, E., Reshef, R., Tsernichovesky, D., and Sher, E. (1998). Improving cold-start functioning of catalytic converters by using phase-change materials. SAE Technical Paper, 980671.
  • Laing, P.M. (1994). Development of an alternator-powered, electrically-heated catalyst system. SAE paper, 941042.
  • Kollman, K., Abthoff, J., and Zahn, W. (1994). Three-way catalysts for ultra-low-emission vehicles. Automot. Engng., October, 17-22.
  • Cooper, B. (1992). The future of catalytic systems. Automot. Engng., April, 9-12.
  • Abthoff, J., Kemmler, R., Klein, H., Matt, M., Robota, H., Wolsing, W., Wiehl, J. and Dunne, S. (1998). Application of in-line hydrocarbon absorber systems. SAE paper, 980422.
  • Noda, N., Takahashi, A., Shibagaki, Y. and Mizuno, H. (1998). In-line hydrocarbon adsorber for cold start emissions- Part II. SAE paper, 980423.
  • Patil, M. D., Peng, Y. L. and Morse, K. (1998). Airless in-line adsorber system for reducing cold start HC emissions. SAE paper, 980419.
  • Isherwood, K. D., Linna, J. R. and Loftus, P. J. (1998). Using on-board fuel reforming by partial oxidation to improve SI engine cold-start performance and emissions. SAE paper, 980939.
  • NREL Web Site (www.ctts.nrel.gov/bent)

A Review on Thermal Energy Storage Systems with Phase Change Materials in Vehicles

Yıl 2012, Cilt: 2 Sayı: 1, 1 - 14, 31.05.2012

Öz

Thermal energy storage (TES) with phase change materials (PCMs) as one of the particular research topics has been paid attention by many researchers. Although the information about this topic is quantitatively enormous, there have not been more studies on its applications in automobiles in literature. There is a great variety of PCMs that can melt and solidify at a wide range of temperatures, making them attractive in a number of applications in automobiles. This paper reviews previous works on TES systems with solid-liquid phase change and provides an insight to recent efforts to develop new types of TES systems with PCMs for use in vehicles. The development of such devices is an extremely urgent need especially for regions with a cold climate. There are three profound aspects to be considered in this study: PCMs, suitable fields for thermal storage in vehicles and some major applications

Kaynakça

  • Fig.9 . Location of E&PR surrounded with PCM on the system (I, II, III, IV, V, and VI show temperature
  • measument points). (Gumus and Ugurlu, 2011) Conclusion
  • A review of TES systems using solid-liquid phase change materials in vehicles has been carried out. All
  • information used in this review was divided into three parts: PCMs, suitable fields for thermal storage in
  • vehicles and some major applications. Materials used by researchers as potential PCMs are briefly described,
  • together with their thermo physical properties. Suitable fields for thermal storage in vehicles have been given.
  • Different methods of TES systems with PCMs in automobile applications are discussed. Many applications of
  • PCMs can be found, divided in pre-heating of engines, pre-heating of catalytic converters, pre-heating of
  • evaporator and pressure regulator of LPG, thermal comfort of passenger compartment, cooling of engines, and
  • others. First three of those applications are detailed in this review. There are the wide range applications of PCMs, changing from heat and coolness storage in passenger
  • compartment to thermal storage in engines, catalytic converters, and other sections of automobiles. Many
  • more applications are yet to be discovered by researchers.
  • Vasiliev, L.L., Burak, V.S., Kulakov, A.G., Mishkinis, D.A., and Bohan, P.V. (2000). Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine. Appl. Therm. Eng., 20, 913- 923.
  • Wentworth, J.T. (1968). Piston ring variables aspect exhaust hydrocarbon emissions. Proceedings of Conference of Society of Automotive Engineers (SAE), Warrendale, PA, Paper 680109.
  • Boam, D.J. (1986). Energy audit on a two-litre saloon car driving an ECE 15 from a cold start. Automobile Engng., 200, 66-67.
  • Vasiliev, L.L., Burak, V.S., Kulakov, A.G., Mishkinis, D.A., and Bohan, P.V. (1999). Heat storage device for pre- heating internal combustion engines at start-up. Int. J. Therm. Sci., 38, 98-104.
  • Schatz, O. (1992). Cold-start improvements with latent heat store. Automotive Engng J., February, 58-61.
  • Bridgegate Ltd. (Authorized dealership of BMW (GB) Ltd Chesterfield). (1996). Internal technology document, 1- 4.
  • Malatidis, N. (1988). Warmespeicher insbesondere Latentwarmespeicher für Kraftfahrzeuge. Patent DE 39 90 275 C 1.
  • Blüher, P. (1991). Latentwarmespeicher erhöht den fahrkomfort und die fahrsicherheit. ATZ Automobiltechnische Zeitschrift, 93, 3-8.
  • Burch, S.D., Potter, T.F., Keyser, M.A., Brady, M.J., and Michaels, K.F. (1995). Reducing cold start emissions by catalytic converter thermal management. SAE Technical Paper, 950409.
  • Burch, S.D., Keyser, M.A., Colucci, C.P., Potter, T.F., Benson, D.K., and Biel, J.P. (1996). Applications and benefits of catalytic converter thermal management. SAE Technical Paper, 961134.
  • Korin, E., Reshef, R., Tsernichovesky, D., and Sher, E. (1998). Improving cold-start functioning of catalytic converters by using phase-change materials. SAE Technical Paper, 980671.
  • Schatz, O. (1992). Cold-start improvements with latent heat store. SAE Technical Paper, 910305.
  • Gumus, M. (2009). Reducing cold-start emission from internal combustion engines by means of thermal energy storage system. Appl. Therm. Eng., 29, 652-660.
  • Gumus, M., and Ugurlu, A. (2011). Application of phase change materials to pre-heating of evaporator and pressure regulator of a gaseous sequential injection system. Applied Energy, 88(12), 4803-4810.
  • Boam, DJ. (1986). Energy audit on a two-litre saloon car driving an ECE 15 from a cold start. Automob Eng, 200, 66-73.
  • Darkwa, K., and O’Callaghan, P.W. (1997). Green transport technology (GTT): analytical studies of a thermochemical store for minimizing energy consumption and air pollution from automobile engines. Appl. Therm. Eng., 17, 603-614.
  • Felix, R.A., Solanki, S.C., and Saini, J.S. (2006). Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew. Energy. 31, 2025-2041.
  • Shanmugasundaram, V., Brown, J.R., and Yerkes, K.L. (1997). Thermal management of high heat-flux sources using phase change materials: a design optimization procedure. AIAA, 2451-2457.
  • Wang, X.Q., Yap, C., and Mujumdar, A.S. (2008). A parametric study of phase change material (PCM)-based heat sinks. Int J Therm Sci, 47, 1055-1068.
  • Zalba, B., Marin, J.M., Cabeza, L.F., and Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23, 251-283.
  • Korin, E., Reshef, R., Tshernichovesky, D., and Sher, E. (1999). Reducing cold-start emission from internal combustion engines by means of a catalytic converter embedded in a phase-change material. London: Proceedings of the Institution of Mechanical Engineers.
  • Farid, M.M., Khudhair, A.M., Razack, S.A.K., and Hallaj, S.A. (2004). A review on phase change energy storage: materials and applications. Energy Convers. Manage., 45, 1597-1615.
  • Pulkrabek, W.W. (1997). Engineering fundamentals of the internal combustion engine. New Jersey: Prentice Hall.
  • Vakilaltojjar, S.M., and Saman, W. (2001). Analysis and modelling of a phase change storage system for air conditioning applications. Appl. Thermal Eng., 21, 249-263.
  • Vakilaltojjar, S.M., and Saman, W. (2000). Domestic heating and cooling with thermal storage. Proceedings of Terrastock 2000, Stuttgart (Germany), 381-386.
  • Bruno, F., and Saman, W. (2002). Testing of a PCM energy storage system for space heating. Proceedings of the World Renewable Energy Congress WII, Cologne (Germany).
  • Omer, S.A., Riffat, S.B., and Ma, X. (2001). Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons). Appl. Thermal Eng., 21, 1265-1271.
  • Riffat, S.B., Omer, S.A., and Ma, X. (2001). A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation, Renew. Energy, 23, 313-323.
  • Ismail, K.A.R., and Henryquez, J.R. (2001). Thermally effective windows with moving phase change material curtains. Appl. Thermal Eng., 21, 1909-1923.
  • Ismail, K.A.R., and Henryquez, J.R. (2002). Parametric study on composite and PCM glass systems. Energy Convers. Mgmt., 43, 973-993.
  • Merker, O., Hepp, V., Beck, A., and Fricke, J. (2002). A new PCM-shading system: a study of the thermal charging and discharging process. Proceedings of Eurosun 2002, Bologna (Italy).
  • Merker, O., Hepp, V., Beck, A., and Fricke, J. (2002). A new solar shading system with phase change material (PCM). Proceedings of the World Renewable Energy Congress WII, Cologne (Germany).
  • Strahle, R., Stephan, B., and Streicher, B. (1997). Heat accumulator for a motor vehicle. Patent WO 97/06972.
  • Zobel, W., Strahle, R., Stolz, A., Horz, S., Jantschek, T., Van Hoof, H.T.C., De Vuono, A.C., Herrick, R.S., Larrabee, S.R., Logic, J.A., Meissner, A.P., Rogers, J.C., and Voss, M.G. (1999). Heat battery. Patent EP 0 916 918 A2.
  • Kniep, R. (1995). Latentwarmespeicher in Kraftfahrzeugen. Speichersalze im Blickpunkt, GIT Fachzeischrift faur das Laboratorium, 39, 1137-1141.
  • Heck, E., Muller, P., and Sebbesse, W. (1994). Latentwarmespeicher zur Verkaurzung des Motorwarmlaufs. MTZ Motortechnische Zeitschrift, 55, 2-8.
  • Socha, L., Heibel, A., Kessler, B., Rieck, J., Mitchell, G. (1998). Performance of different cell structure converters - a total systems perspective. SAE Technical Paper, 982634.
  • Kirchner, T., and Eigenberger, G. (1996). Optimization of the cold-start behaviour of automotive catalysts using an electrically heated pre-catalyst. Chem. Eng. Sci., 51, 2409-2418.
  • Golben, P.M., DaCosta, D., and Sandrock, G. (1997). Hydride based cold-start heater for automotive catalyst. J Alloys Compd, 253, 686-688.
  • Roychoudhury, S., Muench, G., Bianchi, J., Pfefferie, W., and Gonzales, F. (1997). Development and performance of microlith™ light-off preconverters for LEV/ULEV. SAE Technical Paper, 971023.
  • Karkanis, A.N., Botsaris, P.N., and Sparis, P.D. (2003). Emission reduction during cold start via catalyst surface control. Proc. Inst. Mech. Eng. Part D - J Automob. Eng., 218, 333-340.
  • Jeong, S.J., and Kim, W.S. (2001). A new strategy for improving the warm-up performance of a light-off auto- catalyst for reducing cold-start emissions. Proc. Inst. Mech. Eng. Part D - J Automob. Eng., 215, 1179- 1196.
  • Karthik, R., West, D.H., and Balakotaiah, V. (2004). Optimal design of catalytic converters for minimizing cold- start emissions. Catal. Today, 98, 357-373.
  • Burch, S.D., Potter, T.F., Keyser, M.A., Brady, M.J., and Michaels, K.F. (1995). Reducing cold start emissions by catalytic converter thermal management. SAE Technical Paper, 950409.
  • Burch, S.D., Keyser, M.A., Colucci, C.P., Potter, T.F., Benson, D.K., and Biel, J.P. (1996). Applications and benefits of catalytic converter thermal management. SAE Technical Paper, 961134.
  • Korin, E., Reshef, R., Tsernichovesky, D., and Sher, E. (1998). Improving cold-start functioning of catalytic converters by using phase-change materials. SAE Technical Paper, 980671.
  • Laing, P.M. (1994). Development of an alternator-powered, electrically-heated catalyst system. SAE paper, 941042.
  • Kollman, K., Abthoff, J., and Zahn, W. (1994). Three-way catalysts for ultra-low-emission vehicles. Automot. Engng., October, 17-22.
  • Cooper, B. (1992). The future of catalytic systems. Automot. Engng., April, 9-12.
  • Abthoff, J., Kemmler, R., Klein, H., Matt, M., Robota, H., Wolsing, W., Wiehl, J. and Dunne, S. (1998). Application of in-line hydrocarbon absorber systems. SAE paper, 980422.
  • Noda, N., Takahashi, A., Shibagaki, Y. and Mizuno, H. (1998). In-line hydrocarbon adsorber for cold start emissions- Part II. SAE paper, 980423.
  • Patil, M. D., Peng, Y. L. and Morse, K. (1998). Airless in-line adsorber system for reducing cold start HC emissions. SAE paper, 980419.
  • Isherwood, K. D., Linna, J. R. and Loftus, P. J. (1998). Using on-board fuel reforming by partial oxidation to improve SI engine cold-start performance and emissions. SAE paper, 980939.
  • NREL Web Site (www.ctts.nrel.gov/bent)
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Adem Uğurlu Bu kişi benim

Cihan Gökçöl Bu kişi benim

Yayımlanma Tarihi 31 Mayıs 2012
Gönderilme Tarihi 5 Ocak 2015
Yayımlandığı Sayı Yıl 2012 Cilt: 2 Sayı: 1

Kaynak Göster

APA Uğurlu, A., & Gökçöl, C. (2012). A Review on Thermal Energy Storage Systems with Phase Change Materials in Vehicles. Ejovoc (Electronic Journal of Vocational Colleges), 2(1), 1-14.