Araştırma Makalesi
BibTex RIS Kaynak Göster

Design of PDM Controlled MPPT for Solar Powered Wireless EV Charger

Yıl 2025, Cilt: 15 Sayı: 2, 196 - 204, 31.12.2025

Öz

This paper proposes the design and co-simulation of a Solar-Powered Wireless Electric Vehicle (EV) Charger employing a Pulse Density Modulation (PDM) controlled Maximum Power Point Tracking (MPPT) algorithm for enhanced efficiency and precise power flow management. The system is engineered to efficiently harvest energy from a high-power Photovoltaic (PV) array and transfer it wirelessly to an EV battery. The entire power stage, which includes the PV array, Series Resonant Inverter, Wireless Power Transfer (WPT) coils, rectifier, and battery load, is modeled in PSIM. Conversely, the Perturb and Observe (P&O) MPPT algorithm and the generation of the control signals via a 16-level Irregular PDM technique are implemented in MATLAB/Simulink using a co-simulation methodology. The system was tested under varying solar irradiance levels. Results confirm the PV array's maximum power was successfully tracked, while the 16-level Irregular PDM control method ensured precise power flow regulation. Crucially, the PDM strategy facilitated reliable Zero Voltage Switching (ZVS) operation, which is key to guaranteeing the high overall efficiency of the wireless charging process.

Kaynakça

  • [1] V. Yenil and S. Cetin, “An Improved Pulse Density Modulation Control for Secondary Side Controlled Wireless Power Transfer System Using LCC-S Compensation,” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12762–12772, 2022, doi: 10.1109/TIE.2021.3134059.
  • [2] G. Bal, S. Oncu, N. Ozturk, and K. Unal, “An Application of PDM Technique for MPPT in Solar Powered Wireless Power Transfer Systems,” 10th IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2021, pp. 305–309, 2021, doi: 10.1109/ICRERA52334.2021.9598582.
  • [3] H. Özbay, “PDM-MPPT based solar powered induction heating system,” Engineering Science and Technology, an International Journal, vol. 23, no. 6, pp. 1397–1414, 2020, doi: 10.1016/j.jestch.2020.06.005.
  • [4] Y. Yang, M. El Baghdadi, Y. Lan, Y. Benomar, J. Van Mierlo, and O. Hegazy, “Design methodology, modeling, and comparative study of wireless power transfer systems for electric vehicles,” Energies (Basel), vol. 11, no. 7, 2018, doi: 10.3390/en11071716.
  • [5] K. Kamalapathi, P. Srinivasa Rao Nayak, and V. K. Tyagi, “Design and implementation of dual-source (WPT + PV) charger for EV battery charging,” International Transactions on Electrical Energy Systems, vol. 31, no. 11, pp. 1–29, 2021, doi: 10.1002/2050-7038.13084.
  • [6] W. Zhang et al., “A Numerical Method to Reduce the Stray Magnetic Field Around the Asymmetrical Wireless Power Transfer Coils for Electric Vehicle Charging,” Journal of Electrical Engineering and Technology, vol. 17, no. 3, pp. 1859–1871, 2022, doi: 10.1007/s42835-021-00948-6.
  • [7] A. Sagar et al., “A Comprehensive Review of the Recent Development of Wireless Power Transfer Technologies for Electric Vehicle Charging Systems,” IEEE Access, vol. 11, no. July, pp. 83703–83751, 2023, doi: 10.1109/ACCESS.2023.3300475.
  • [8] H. T. Nguyen et al., “Review Map of Comparative Designs for Wireless High-Power Transfer Systems in EV Applications: Maximum Efficiency, ZPA, and CC/CV Modes at Fixed Resonance Frequency Independent from Coupling Coefficient,” IEEE Trans Power Electron, vol. 37, no. 4, pp. 4857–4876, 2022, doi: 10.1109/TPEL.2021.3124293.
  • [9] J. Cai, X. Wu, P. Sun, J. Sun, and Q. Xiong, “Optimization Design of Zero-Voltage-Switching Control in S-LCC Inductive Power Transfer System Under Dynamic Coupling Coefficient,” Journal of Electrical Engineering and Technology, vol. 16, no. 6, pp. 2937–2948, 2021, doi: 10.1007/s42835-021-00828-z.
  • [10] P. K. Joseph and D. Elangovan, “A review on renewable energy powered wireless power transmission techniques for light electric vehicle charging applications,” J Energy Storage, vol. 16, pp. 145–155, 2018, doi: 10.1016/j.est.2017.12.019.
  • [11] Y. R. Kumar, D. Nayak, M. Kumar, and S. Pramanick, “A Solar Powered Wireless Power Transfer for Electric Vehicle Charging,” 2022 IEEE Vehicle Power and Propulsion Conference, VPPC 2022 - Proceedings, pp. 1–6, 2022, doi: 10.1109/VPPC55846.2022.10003449.
  • [12] R. Wiencek and S. Ghosh, “Comparative Analysis of Three-Phase Configurations for Efficient Wireless Electric Vehicle Charging,” Proceedings - 2023 IEEE 5th Global Power, Energy and Communication Conference, GPECOM 2023, pp. 276–281, 2023, doi: 10.1109/GPECOM58364.2023.10175676.
  • [13] N. Mohamed, F. Aymen, Z. M. Ali, A. F. Zobaa, and S. H. E. Abdel Aleem, “Efficient power management strategy of electric vehicles based hybrid renewable energy,” Sustainability (Switzerland), vol. 13, no. 13, 2021, doi: 10.3390/su13137351.
  • [14] G. R. C. Mouli, P. Van Duijsen, F. Grazian, A. Jamodkar, P. Bauer, and O. Isabella, “Sustainable e-bike charging station that enables ac, dc andwireless charging from solar energy,” Energies (Basel), vol. 13, no. 14, 2020, doi: 10.3390/en13143549.
  • [15] K. Kumar, K. V. V. S. R. Chowdary, P. Sanjeevikumar, and R. Prasad, “Analysis of Solar PV Fed Dynamic Wireless Charging System for Electric Vehicles,” IECON Proceedings (Industrial Electronics Conference), vol. 2021-Octob, pp. 1–6, 2021, doi: 10.1109/IECON48115.2021.9589677.
  • [16] B. Ji et al., “Basic study of solar battery powered wireless power transfer system with MPPT mode and DC bus stabilization for lunar rover,” Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 4787–4792, 2018, doi: 10.1109/IECON.2018.8591152.
  • [17] A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, “Inductive Wireless Power Transfer Charging for Electric Vehicles-A Review,” IEEE Access, vol. 9, pp. 137667–137713, 2021, doi: 10.1109/ACCESS.2021.3116678.
  • [18] G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436–7447, 2015, doi: 10.1109/TIE.2015.2455524.
  • [19] K. Colak, E. Asa, M. Bojarski, D. Czarkowski, and O. C. Onar, “A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer,” IEEE Trans Power Electron, vol. 30, no. 11, pp. 6288–6297, 2015, doi: 10.1109/TPEL.2015.2430832.
  • [20] L. Pamungkas, M. Tampubolon, Q. Lin, and H. J. Chiu, “Performance Comparison of Primary Side PFM and Secondary Side PWM for SS Wireless Power Transfer CC/CV Control Strategy,” Proceedings - 2018 IEEE International Power Electronics and Application Conference and Exposition, PEAC 2018, pp. 1–5, 2018, doi: 10.1109/PEAC.2018.8590421.
  • [21] X. Sheng, L. Shi, and M. Fan, “An Improved Pulse Density Modulation of High-Frequency Inverter in ICPT System,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8017–8027, 2021, doi: 10.1109/TIE.2020.3013782.
  • [22] H. Li, J. Fang, S. Chen, K. Wang, and Y. Tang, “Pulse Density Modulation for Maximum Efficiency Point Tracking of Wireless Power Transfer Systems,” IEEE Trans Power Electron, vol. 33, no. 6, pp. 5492–5501, 2018, doi: 10.1109/TPEL.2017.2737883.
  • [23] A. Karafil, H. Ozbay, and S. Oncu, “Design and Analysis of Single-Phase Grid-Tied Inverter With PDM Mppt-controlled Converter,” IEEE Trans Power Electron, vol. 35, no. 5, pp. 4756–4766, 2020.
  • [24] K. Unal, G. Bal, S. Oncu, and N. Ozturk, “MPPT Design for PV-Powered WPT System with Irregular Pulse Density Modulation,” Electric Power Components and Systems, vol. 51, no. 1, pp. 83–91, 2023, doi: 10.1080/15325008.2022.2161674.
  • [25] X. Sheng and L. Shi, “An Improved Pulse Density Modulation Strategy Based on Harmonics for ICPT System,” IEEE Trans Power Electron, vol. 35, no. 7, pp. 6810–6819, 2020, doi: 10.1109/TPEL.2019.2958644.
  • [26] V. Esteve et al., “Enhanced Pulse-Density-Modulated Power Control for High-Frequency Induction Heating Inverters,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6905–6914, 2015, doi: 10.1109/TIE.2015.2436352.
  • [27] A. Karafil, “Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 36, no. 3, pp. 1595–1611, 2021, doi: 10.17341/gazimmfd.685751.
  • [28] I. Bentalhik et al., “Analysis, Design and Realization of a Wireless Power Transfer Charger for Electric Vehicles: Theoretical Approach and Experimental Results,” World Electric Vehicle Journal, vol. 13, no. 7, 2022, doi: 10.3390/wevj13070121.
  • [29] H. Yue, Z. Fang, and Y. Xia, “PDM Control Strategy of Extremely High Gain ICPT System Applying for Electrical Isolation Aimed at Maximum Efficiency,” IECON Proceedings (Industrial Electronics Conference), vol. 2022-Octob, pp. 1–6, 2022, doi: 10.1109/IECON49645.2022.9968570.
  • [30] A. Karafil, H. Ozbay, and S. Oncu, “Comparison of regular and irregular 32 pulse density modulation patterns for induction heating,” IET Power Electronics, no. August, pp. 1–12, 2020, doi: 10.1049/pel2.12012.
  • [31] A. Karafil, “Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 36, no. 3, pp. 1595–1611, 2021, doi: 10.17341/gazimmfd.685751.
  • [32] A. Karafil, H. Ozbay, and S. Oncu, “Design and Analysis of Single-Phase Grid-Tied Inverter With PDM Mppt-controlled Converter,” IEEE Trans Power Electron, vol. 35, no. 5, pp. 4756–4766, 2020.

Elektrikli Araçlar için PDM Kontrollü MPPT ile Güneş Enerjili Kablosuz Şarj Sistemi Tasarım

Yıl 2025, Cilt: 15 Sayı: 2, 196 - 204, 31.12.2025

Öz

Bu çalışma, yüksek verimlilik ve hassas güç akış yönetimi için Darbe Yoğunluk Modülasyonu (PDM) kontrollü Maksimum Güç Noktası Takibi (MPPT) algoritması kullanan, Güneş Enerjili Kablosuz Elektrikli Araç (EA) Şarj Sistemi tasarımını ve ve bu sistemin benzetim sonuçlarını sunmaktadır. Sistem, yüksek güçlü Fotovoltaik (FV) dizisinden enerjiyi verimli bir şekilde elde etmek ve bu enerjiyi kablosuz olarak bir EA bataryasına aktarmak üzere tasarlanmıştır. FV dizisi, seri rezonans invertör, kablosuz güç transferi bobinleri, doğrultucu ve batarya yükünü içeren tüm güç aşaması PSIM yazılımında modellenmiştir. Buna karşın, Perturb and Observe (P&O) MPPT algoritması ve kontrol sinyallerinin 16 seviyeli Düzensiz PDM tekniğiyle üretimi, ortak-simülasyon metodolojisi kullanılarak MATLAB/Simulink'te gerçekleştirilmiştir. Sistem, değişen güneş ışınım seviyeleri altında test edilmiştir. Sonuçlar, FV dizisinin maksimum gücünün başarıyla takip edildiğini doğrulamakta, aynı zamanda 16 seviyeli Düzensiz PDM kontrol yönteminin hassas güç akışı regülasyonunu sağladığını göstermektedir. PDM stratejisi, kablosuz şarj sürecinin yüksek verimliliğini sağlayan ve anahtar unsur olan Sıfır Gerilim Anahtarlama (ZVS) operasyonunu mümkün kılmıştır.

Kaynakça

  • [1] V. Yenil and S. Cetin, “An Improved Pulse Density Modulation Control for Secondary Side Controlled Wireless Power Transfer System Using LCC-S Compensation,” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12762–12772, 2022, doi: 10.1109/TIE.2021.3134059.
  • [2] G. Bal, S. Oncu, N. Ozturk, and K. Unal, “An Application of PDM Technique for MPPT in Solar Powered Wireless Power Transfer Systems,” 10th IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2021, pp. 305–309, 2021, doi: 10.1109/ICRERA52334.2021.9598582.
  • [3] H. Özbay, “PDM-MPPT based solar powered induction heating system,” Engineering Science and Technology, an International Journal, vol. 23, no. 6, pp. 1397–1414, 2020, doi: 10.1016/j.jestch.2020.06.005.
  • [4] Y. Yang, M. El Baghdadi, Y. Lan, Y. Benomar, J. Van Mierlo, and O. Hegazy, “Design methodology, modeling, and comparative study of wireless power transfer systems for electric vehicles,” Energies (Basel), vol. 11, no. 7, 2018, doi: 10.3390/en11071716.
  • [5] K. Kamalapathi, P. Srinivasa Rao Nayak, and V. K. Tyagi, “Design and implementation of dual-source (WPT + PV) charger for EV battery charging,” International Transactions on Electrical Energy Systems, vol. 31, no. 11, pp. 1–29, 2021, doi: 10.1002/2050-7038.13084.
  • [6] W. Zhang et al., “A Numerical Method to Reduce the Stray Magnetic Field Around the Asymmetrical Wireless Power Transfer Coils for Electric Vehicle Charging,” Journal of Electrical Engineering and Technology, vol. 17, no. 3, pp. 1859–1871, 2022, doi: 10.1007/s42835-021-00948-6.
  • [7] A. Sagar et al., “A Comprehensive Review of the Recent Development of Wireless Power Transfer Technologies for Electric Vehicle Charging Systems,” IEEE Access, vol. 11, no. July, pp. 83703–83751, 2023, doi: 10.1109/ACCESS.2023.3300475.
  • [8] H. T. Nguyen et al., “Review Map of Comparative Designs for Wireless High-Power Transfer Systems in EV Applications: Maximum Efficiency, ZPA, and CC/CV Modes at Fixed Resonance Frequency Independent from Coupling Coefficient,” IEEE Trans Power Electron, vol. 37, no. 4, pp. 4857–4876, 2022, doi: 10.1109/TPEL.2021.3124293.
  • [9] J. Cai, X. Wu, P. Sun, J. Sun, and Q. Xiong, “Optimization Design of Zero-Voltage-Switching Control in S-LCC Inductive Power Transfer System Under Dynamic Coupling Coefficient,” Journal of Electrical Engineering and Technology, vol. 16, no. 6, pp. 2937–2948, 2021, doi: 10.1007/s42835-021-00828-z.
  • [10] P. K. Joseph and D. Elangovan, “A review on renewable energy powered wireless power transmission techniques for light electric vehicle charging applications,” J Energy Storage, vol. 16, pp. 145–155, 2018, doi: 10.1016/j.est.2017.12.019.
  • [11] Y. R. Kumar, D. Nayak, M. Kumar, and S. Pramanick, “A Solar Powered Wireless Power Transfer for Electric Vehicle Charging,” 2022 IEEE Vehicle Power and Propulsion Conference, VPPC 2022 - Proceedings, pp. 1–6, 2022, doi: 10.1109/VPPC55846.2022.10003449.
  • [12] R. Wiencek and S. Ghosh, “Comparative Analysis of Three-Phase Configurations for Efficient Wireless Electric Vehicle Charging,” Proceedings - 2023 IEEE 5th Global Power, Energy and Communication Conference, GPECOM 2023, pp. 276–281, 2023, doi: 10.1109/GPECOM58364.2023.10175676.
  • [13] N. Mohamed, F. Aymen, Z. M. Ali, A. F. Zobaa, and S. H. E. Abdel Aleem, “Efficient power management strategy of electric vehicles based hybrid renewable energy,” Sustainability (Switzerland), vol. 13, no. 13, 2021, doi: 10.3390/su13137351.
  • [14] G. R. C. Mouli, P. Van Duijsen, F. Grazian, A. Jamodkar, P. Bauer, and O. Isabella, “Sustainable e-bike charging station that enables ac, dc andwireless charging from solar energy,” Energies (Basel), vol. 13, no. 14, 2020, doi: 10.3390/en13143549.
  • [15] K. Kumar, K. V. V. S. R. Chowdary, P. Sanjeevikumar, and R. Prasad, “Analysis of Solar PV Fed Dynamic Wireless Charging System for Electric Vehicles,” IECON Proceedings (Industrial Electronics Conference), vol. 2021-Octob, pp. 1–6, 2021, doi: 10.1109/IECON48115.2021.9589677.
  • [16] B. Ji et al., “Basic study of solar battery powered wireless power transfer system with MPPT mode and DC bus stabilization for lunar rover,” Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 4787–4792, 2018, doi: 10.1109/IECON.2018.8591152.
  • [17] A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, “Inductive Wireless Power Transfer Charging for Electric Vehicles-A Review,” IEEE Access, vol. 9, pp. 137667–137713, 2021, doi: 10.1109/ACCESS.2021.3116678.
  • [18] G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436–7447, 2015, doi: 10.1109/TIE.2015.2455524.
  • [19] K. Colak, E. Asa, M. Bojarski, D. Czarkowski, and O. C. Onar, “A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer,” IEEE Trans Power Electron, vol. 30, no. 11, pp. 6288–6297, 2015, doi: 10.1109/TPEL.2015.2430832.
  • [20] L. Pamungkas, M. Tampubolon, Q. Lin, and H. J. Chiu, “Performance Comparison of Primary Side PFM and Secondary Side PWM for SS Wireless Power Transfer CC/CV Control Strategy,” Proceedings - 2018 IEEE International Power Electronics and Application Conference and Exposition, PEAC 2018, pp. 1–5, 2018, doi: 10.1109/PEAC.2018.8590421.
  • [21] X. Sheng, L. Shi, and M. Fan, “An Improved Pulse Density Modulation of High-Frequency Inverter in ICPT System,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8017–8027, 2021, doi: 10.1109/TIE.2020.3013782.
  • [22] H. Li, J. Fang, S. Chen, K. Wang, and Y. Tang, “Pulse Density Modulation for Maximum Efficiency Point Tracking of Wireless Power Transfer Systems,” IEEE Trans Power Electron, vol. 33, no. 6, pp. 5492–5501, 2018, doi: 10.1109/TPEL.2017.2737883.
  • [23] A. Karafil, H. Ozbay, and S. Oncu, “Design and Analysis of Single-Phase Grid-Tied Inverter With PDM Mppt-controlled Converter,” IEEE Trans Power Electron, vol. 35, no. 5, pp. 4756–4766, 2020.
  • [24] K. Unal, G. Bal, S. Oncu, and N. Ozturk, “MPPT Design for PV-Powered WPT System with Irregular Pulse Density Modulation,” Electric Power Components and Systems, vol. 51, no. 1, pp. 83–91, 2023, doi: 10.1080/15325008.2022.2161674.
  • [25] X. Sheng and L. Shi, “An Improved Pulse Density Modulation Strategy Based on Harmonics for ICPT System,” IEEE Trans Power Electron, vol. 35, no. 7, pp. 6810–6819, 2020, doi: 10.1109/TPEL.2019.2958644.
  • [26] V. Esteve et al., “Enhanced Pulse-Density-Modulated Power Control for High-Frequency Induction Heating Inverters,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6905–6914, 2015, doi: 10.1109/TIE.2015.2436352.
  • [27] A. Karafil, “Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 36, no. 3, pp. 1595–1611, 2021, doi: 10.17341/gazimmfd.685751.
  • [28] I. Bentalhik et al., “Analysis, Design and Realization of a Wireless Power Transfer Charger for Electric Vehicles: Theoretical Approach and Experimental Results,” World Electric Vehicle Journal, vol. 13, no. 7, 2022, doi: 10.3390/wevj13070121.
  • [29] H. Yue, Z. Fang, and Y. Xia, “PDM Control Strategy of Extremely High Gain ICPT System Applying for Electrical Isolation Aimed at Maximum Efficiency,” IECON Proceedings (Industrial Electronics Conference), vol. 2022-Octob, pp. 1–6, 2022, doi: 10.1109/IECON49645.2022.9968570.
  • [30] A. Karafil, H. Ozbay, and S. Oncu, “Comparison of regular and irregular 32 pulse density modulation patterns for induction heating,” IET Power Electronics, no. August, pp. 1–12, 2020, doi: 10.1049/pel2.12012.
  • [31] A. Karafil, “Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 36, no. 3, pp. 1595–1611, 2021, doi: 10.17341/gazimmfd.685751.
  • [32] A. Karafil, H. Ozbay, and S. Oncu, “Design and Analysis of Single-Phase Grid-Tied Inverter With PDM Mppt-controlled Converter,” IEEE Trans Power Electron, vol. 35, no. 5, pp. 4756–4766, 2020.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Cem Kutlu 0000-0003-4457-7197

Harun Özbay 0000-0003-1068-244X

Gönderilme Tarihi 16 Ekim 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Kutlu, C., & Özbay, H. (2025). Design of PDM Controlled MPPT for Solar Powered Wireless EV Charger. European Journal of Technique (EJT), 15(2), 196-204. https://doi.org/10.36222/ejt.1804687