Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of CuNiSi Composites by Powder Metallurgy Method: Effects of Ti on the Microstructural and Corrosion Properties

Yıl 2023, Cilt: 13 Sayı: 2, 88 - 93, 31.12.2023
https://doi.org/10.36222/ejt.1372650

Öz

In this study, composite samples were produced by supplementing the CuNiSi powder mixture with Ti particles at different weight ratios using the powder metallurgy (PM) method. The prepared CuNiSi and Ti powder mixtures were turned into pellets by cold pressing under 500 MPa pressure. The pelletized samples were subjected to sintering in an atmosphere-controlled oven at 900 ℃ for 2 hours. Scanning electron microscopy (SEM-EDS), SEM-Mapping and corrosion experiments were performed to determine the microstructures of the produced samples. From the microstructure results, it was determined that Ti particles were distributed homogeneously within the structure. As the amount of Ti increased, the resistance of the composite to corrosion increased. In addition to that, as the amount of Ti increased, the resistance of the composite to corrosion decreased.

Kaynakça

  • [1] Wang, W., Chen, Z., Guo, E., Zhang, S., Kang, H., & Wang, T. (2023). Effects of Cr Addition on the Precipitation and Properties of Cryo-Rolled CuNiSi Alloys. Metals, 13(4), 758.
  • [2] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy. Micromachines, 14(8), 1590.
  • [3] Ahn, J. H., Han, S. Z., Choi, E. A., Lee, H., Lim, S. H., Lee, J., ... & Han, H. N. (2020). The effect of bimodal structure with nanofibers and normal precipitates on the mechanical and electrical properties of CuNiSi alloy. Materials Characterization, 170, 110642.
  • [4] Kılıç, M. (2020). Effect Of Welding Parameters On Wear Performance Of Boron Coating Made With PTA. European Journal of Technique (EJT), 10(1), 106-118.
  • [5] Fincato, R., & Tsutsumi, S. (2022). Ductile fracture modeling of metallic materials: a short review. Frattura ed Integrità Strutturale, 16(59), 1-17.
  • [6] Ercetin, A., Özgün, Ö., Aslantaş, K., Der, O., Yalçın, B., Şimşir, E., & Aamir, M. (2023). Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites. Metals, 13(6), 1097.
  • [7] Akkaş, M. (2022). Synthesis and Characterization of MoSi2 Particle Reinforced AlCuMg Composites by Molten Salt Shielded Method. Türk Doğa ve Fen Dergisi, 11(4), 11-17.
  • [8] Kaya, N., Çavdar, Ş., Öztürk, Ö., Ada, H., & Koralay, H. (2021). Investigation of microhardness properties of the multi-walled carbon nanotube additive MgB2 structure by using the vickers method. Cryogenics, 116, 103295.
  • [9] Wang, W., Xiao, Z., Lei, Q., Meng, H., Guo, Q., Yang, Y., & Li, Z. (2021). A multiphase strengthened Cu-Nb-Si alloy with high strength and high conductivity. Materials Characterization, 182, 111565.
  • [10] Ada, H., Türkmen, E., Kaplan, Y., Özçatalbaş, E., Şatir, E. Y., & Aksöz, S. (2023). An examination of microstructure, microhardness and tribological properties of ceramic reinforced bronze matrix composite materials. Science of Sintering, (00), 42-42.
  • [11] Buytoz, S., Kilic, M., & Carboga, C. (2022). Microstructure and wear behaviour of Ni-based/TiC composite coating. International Journal of Surface Science and Engineering, 16(1), 71-90.
  • [12] Kim, H., Ahn, J. H., Han, S. Z., Jo, J., Baik, H., Kim, M., & Han, H. N. (2020). Microstructural characterization of cold-drawn Cu–Ni–Si alloy having high strength and high conductivity. Journal of Alloys and Compounds, 832, 155059.
  • [13] Kılıç, M. (2021). Toz metalurjisi ile Üretilen NiTi Alaşımına Al'un Etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(1), 256-267.
  • [14] Konieczny, J., & Labisz, K. (2021). Thermal Analysis and Selected Properties of CuNi2Si Alloy Used for Railway Traction. Materials, 14(16), 4613.
  • [15] Li, L., Kang, H., Zhang, S., Li, R., Yang, X., Chen, Z., ... & Wang, T. (2023). Microstructure and properties of Cu-Cr-Zr (Mg) alloys subjected to cryorolling and aging treatment. Journal of Alloys and Compounds, 938, 168656.
  • [16] Tang, S., Zhou, M., Zhang, Y., Xu, D., Zhang, Z., Zheng, X., ... & Marchenko, E. S. (2023). Improved microstructure, mechanical properties and electrical conductivity of the Cu–Ni–Sn–Ti–Cr alloy due to Ce micro-addition. Materials Science and Engineering: A, 871, 144910.
  • [17] Kılıç, M., Imak, A., & Kirik, I. (2021). Surface modification of AISI 304 stainless steel with NiBSi-SiC composite by TIG method. Journal of Materials Engineering and Performance, 30, 1411-1419.
  • [18] Wang, W., Zhu, J., Qin, N., Zhang, Y., Li, S., Xiao, Z., ... & Li, Z. (2020). Effects of minor rare earths on the microstructure and properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 847, 155762.
  • [19] Çetin, T., & Akkaş, M. (2020). Effect of WC reinforced on microstructure and mechanical properties of CuAlMn alloys produced by hot pressing method. European Journal of Technique (EJT), 10(1), 173-183.
  • [20] Wei, H., Chen, Y., Li, Z., Shan, Q., Yu, W., & Tang, D. (2021). Microstructure evolution and dislocation strengthening mechanism of Cu–Ni–Co–Si alloy. Materials Science and Engineering: A, 826, 142023.
  • [21] Xie, H., Tang, X., Chen, X., Sun, F., Dong, L., Tan, Y., ... & Fu, S. (2023). The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion. Journal of Materials Research and Technology, 23, 3322-3336.
  • [22] Akkaş, M., & Boushiha, K. F. I. (2021). Investigation of wc reinforced cunisi composites produced by mechanical alloying method. El-Cezeri, 8(2), 592-603.
  • [23] Wei, H., Chen, Y., Zhao, Y., Yu, W., Su, L., & Tang, D. (2021). Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu–Ni–Si–Co alloy. Materials Science and Engineering: A, 814, 141239.
  • [24] Zhang, J., Zhang, S., Cao, X., Li, L., Yang, X., Chen, Z., ... & Wang, T. (2023). Effect of temperature on mechanical behavior of Cu–Cr–Co–Ti alloys. Materials Characterization, 200, 112904.
  • [25] Samant, A. V., & GrenSinG, F. C. (2015). Corrosion of Copper Alloys in Consumer Electronics Environments. Mater. Perform., 54, 64-67.
  • [26] Yang, H., Ma, Z., Lei, C., Meng, L., Fang, Y., Liu, J., & Wang, H. (2020). High strength and high conductivity Cu alloys: A review. Science China Technological Sciences, 63(12), 2505-2517.
  • [27] Ada, H., El Rubaye, A. Q. J., Tokeser, E. A., Mavi, A., & Aksoz, S. (2023). Coating of Ti6Al4V Alloys by Physical Vapor Deposition Method and Micro-scratch and Corrosion Test Investigations of Coated Samples. Journal of Advanced Applied Sciences, 2(1), 36-45.
Yıl 2023, Cilt: 13 Sayı: 2, 88 - 93, 31.12.2023
https://doi.org/10.36222/ejt.1372650

Öz

Kaynakça

  • [1] Wang, W., Chen, Z., Guo, E., Zhang, S., Kang, H., & Wang, T. (2023). Effects of Cr Addition on the Precipitation and Properties of Cryo-Rolled CuNiSi Alloys. Metals, 13(4), 758.
  • [2] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy. Micromachines, 14(8), 1590.
  • [3] Ahn, J. H., Han, S. Z., Choi, E. A., Lee, H., Lim, S. H., Lee, J., ... & Han, H. N. (2020). The effect of bimodal structure with nanofibers and normal precipitates on the mechanical and electrical properties of CuNiSi alloy. Materials Characterization, 170, 110642.
  • [4] Kılıç, M. (2020). Effect Of Welding Parameters On Wear Performance Of Boron Coating Made With PTA. European Journal of Technique (EJT), 10(1), 106-118.
  • [5] Fincato, R., & Tsutsumi, S. (2022). Ductile fracture modeling of metallic materials: a short review. Frattura ed Integrità Strutturale, 16(59), 1-17.
  • [6] Ercetin, A., Özgün, Ö., Aslantaş, K., Der, O., Yalçın, B., Şimşir, E., & Aamir, M. (2023). Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites. Metals, 13(6), 1097.
  • [7] Akkaş, M. (2022). Synthesis and Characterization of MoSi2 Particle Reinforced AlCuMg Composites by Molten Salt Shielded Method. Türk Doğa ve Fen Dergisi, 11(4), 11-17.
  • [8] Kaya, N., Çavdar, Ş., Öztürk, Ö., Ada, H., & Koralay, H. (2021). Investigation of microhardness properties of the multi-walled carbon nanotube additive MgB2 structure by using the vickers method. Cryogenics, 116, 103295.
  • [9] Wang, W., Xiao, Z., Lei, Q., Meng, H., Guo, Q., Yang, Y., & Li, Z. (2021). A multiphase strengthened Cu-Nb-Si alloy with high strength and high conductivity. Materials Characterization, 182, 111565.
  • [10] Ada, H., Türkmen, E., Kaplan, Y., Özçatalbaş, E., Şatir, E. Y., & Aksöz, S. (2023). An examination of microstructure, microhardness and tribological properties of ceramic reinforced bronze matrix composite materials. Science of Sintering, (00), 42-42.
  • [11] Buytoz, S., Kilic, M., & Carboga, C. (2022). Microstructure and wear behaviour of Ni-based/TiC composite coating. International Journal of Surface Science and Engineering, 16(1), 71-90.
  • [12] Kim, H., Ahn, J. H., Han, S. Z., Jo, J., Baik, H., Kim, M., & Han, H. N. (2020). Microstructural characterization of cold-drawn Cu–Ni–Si alloy having high strength and high conductivity. Journal of Alloys and Compounds, 832, 155059.
  • [13] Kılıç, M. (2021). Toz metalurjisi ile Üretilen NiTi Alaşımına Al'un Etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(1), 256-267.
  • [14] Konieczny, J., & Labisz, K. (2021). Thermal Analysis and Selected Properties of CuNi2Si Alloy Used for Railway Traction. Materials, 14(16), 4613.
  • [15] Li, L., Kang, H., Zhang, S., Li, R., Yang, X., Chen, Z., ... & Wang, T. (2023). Microstructure and properties of Cu-Cr-Zr (Mg) alloys subjected to cryorolling and aging treatment. Journal of Alloys and Compounds, 938, 168656.
  • [16] Tang, S., Zhou, M., Zhang, Y., Xu, D., Zhang, Z., Zheng, X., ... & Marchenko, E. S. (2023). Improved microstructure, mechanical properties and electrical conductivity of the Cu–Ni–Sn–Ti–Cr alloy due to Ce micro-addition. Materials Science and Engineering: A, 871, 144910.
  • [17] Kılıç, M., Imak, A., & Kirik, I. (2021). Surface modification of AISI 304 stainless steel with NiBSi-SiC composite by TIG method. Journal of Materials Engineering and Performance, 30, 1411-1419.
  • [18] Wang, W., Zhu, J., Qin, N., Zhang, Y., Li, S., Xiao, Z., ... & Li, Z. (2020). Effects of minor rare earths on the microstructure and properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 847, 155762.
  • [19] Çetin, T., & Akkaş, M. (2020). Effect of WC reinforced on microstructure and mechanical properties of CuAlMn alloys produced by hot pressing method. European Journal of Technique (EJT), 10(1), 173-183.
  • [20] Wei, H., Chen, Y., Li, Z., Shan, Q., Yu, W., & Tang, D. (2021). Microstructure evolution and dislocation strengthening mechanism of Cu–Ni–Co–Si alloy. Materials Science and Engineering: A, 826, 142023.
  • [21] Xie, H., Tang, X., Chen, X., Sun, F., Dong, L., Tan, Y., ... & Fu, S. (2023). The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion. Journal of Materials Research and Technology, 23, 3322-3336.
  • [22] Akkaş, M., & Boushiha, K. F. I. (2021). Investigation of wc reinforced cunisi composites produced by mechanical alloying method. El-Cezeri, 8(2), 592-603.
  • [23] Wei, H., Chen, Y., Zhao, Y., Yu, W., Su, L., & Tang, D. (2021). Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu–Ni–Si–Co alloy. Materials Science and Engineering: A, 814, 141239.
  • [24] Zhang, J., Zhang, S., Cao, X., Li, L., Yang, X., Chen, Z., ... & Wang, T. (2023). Effect of temperature on mechanical behavior of Cu–Cr–Co–Ti alloys. Materials Characterization, 200, 112904.
  • [25] Samant, A. V., & GrenSinG, F. C. (2015). Corrosion of Copper Alloys in Consumer Electronics Environments. Mater. Perform., 54, 64-67.
  • [26] Yang, H., Ma, Z., Lei, C., Meng, L., Fang, Y., Liu, J., & Wang, H. (2020). High strength and high conductivity Cu alloys: A review. Science China Technological Sciences, 63(12), 2505-2517.
  • [27] Ada, H., El Rubaye, A. Q. J., Tokeser, E. A., Mavi, A., & Aksoz, S. (2023). Coating of Ti6Al4V Alloys by Physical Vapor Deposition Method and Micro-scratch and Corrosion Test Investigations of Coated Samples. Journal of Advanced Applied Sciences, 2(1), 36-45.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Cihan Özorak 0000-0003-3052-3024

Tarek Mousa K. Tabonah 0000-0002-3899-5088

Mehmet Akkaş 0000-0002-0359-4743

Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Özorak, C., Tabonah, T. M. K., & Akkaş, M. (2023). Production of CuNiSi Composites by Powder Metallurgy Method: Effects of Ti on the Microstructural and Corrosion Properties. European Journal of Technique (EJT), 13(2), 88-93. https://doi.org/10.36222/ejt.1372650

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı