Derleme
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 14 Sayı: 2, 136 - 145

Öz

Kaynakça

  • [1]R. Y. Venkataravanappa, A. Lakshmikanthan, N. Kapilan, M. P. G. Chandrashekarappa, O. Der, and A. Ercetin, “Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites,” J. Compos. Sci., vol. 7, no. 7, 2023, doi: 10.3390/jcs7070266.
  • [2] O. Anozie and N. Ifeanyi, “Evaluation of the Physico-Mechanical Properties of Polyester/Corn Stalk Composite,” Poljopr. Teh., 2022, doi: 10.5937/poljteh2203009o.
  • [3] A. M. Youssef, M. S. Hasanin, M. E. A. El-Aziz, and O. M. Darwesh, “Green, Economic, and Partially Biodegradable Wood Plastic Composites via Enzymatic Surface Modification of Lignocellulosic Fibers,” Heliyon, 2019, doi: 10.1016/j.heliyon.2019.e01332.
  • [4] H. Serin, G. Güzel, U. Kumlu, and M. A. Akar, “Potential of Using Agricultural Waste Composites as Thermal Insulation Material,” Macromol. Symp., 2022, doi: 10.1002/masy.202100409.
  • [5] G. A. K. Gürdil, M. Mengstu, and A. Kakarash, “Utilization of Agricultural Wastes for Sustainable Development,” Black Sea Journal of Agriculture. 2021. doi: 10.47115/bsagriculture.953415.
  • [6] F. S. Shahar, M. T. H. Sultan, A. Łukaszewicz, and R. A. Grzejda, “A Review on Agricultural Wastes and Pineapple Leaf Fibers in UAVs Airframe Manufacturing,” Preprints, 2023, doi: https://doi.org/10.20944/preprints202307.1813.v1.
  • [7] D. Koçak, H. Olcay, and Z. Yildiz, “Mechanical and Acoustic Properties of Alkali Treated Agricultural Waste Reinforced Sustainable Polyurethane Composites,” Journal of Reinforced Plastics and Composites. 2022. doi: 10.1177/07316844221147641.
  • [8] U. I. A. B. M. Adnan, F. R. Wong, M. F. Morni, A. H. Abdullah, A. A. Rashid, and S. K. Yong, “Mechanical Properties of Rice Husk-Recycled Polypropylene Composite,” J. Mech. Eng., vol. 12, no. 1, pp. 45–61, 2023, doi: 10.24191/JMECHE.V12I1.24637.
  • [9] R. Muthuraj, C. Lacoste, P. Lacroix, and A. Bergeret, “Sustainable Thermal Insulation Biocomposites From Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Performances Evaluation,” Industrial Crops and Products. 2019. doi: 10.1016/j.indcrop.2019.04.053.
  • [10] L. Yang, D. Park, and Z. Qin, “Material Function of Mycelium-Based Bio-Composite: A Review,” Front. Mater., 2021, doi: 10.3389/fmats.2021.737377.
  • [11] C. Nyambo, A. K. Mohanty, and M. Misra, “Polylactide-Based Renewable Green Composites From Agricultural Residues and Their Hybrids,” Biomacromolecules. 2010. doi: 10.1021/bm1003114.
  • [12] A. M. Nermin and D. E. El-Nashar, “The Influence of Using Agriculture Wastes as Reinforcing Fillers on Hybrid Biocomposites Properties.” 2019. doi: 10.21825/autex.63876.
  • [13] G. U. Raju and S. Kumarappa, “Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled With Agricultural Residue,” Polymers From Renewable Resources. 2012. doi: 10.1177/204124791200300303.
  • [14] S. Manivannan, R. Venkatesh, M. Kubendiran, C. R. Kannan, N. Karthikeyan, and S. Naveen, “Conservation of Waste Melon Shell and Fly Ash Utilized as Reinforcements for Aluminum Alloy Matrix in Terrestrial Ecosystem Acquired Green Hybrid Composites,” Environmental Quality Management. 2023. doi: 10.1002/tqem.21990.
  • [15] C. H. S. N. G. Velmurugana, Jasgurpreet Singh Chohan, M. Abhilakshmi, S. Harikaran, M.B Shakthi dharshini, “A Short Review on the Growth of Lightweight Agronomic Surplus Biomass Composites for Ecological Applications Using Biopolymers,” Int. Res. J. Multidiscip. Technovation, vol. 6, no. 1, pp. 140–154, Jan. 2024, doi: 10.54392/irjmt24111.
  • [16] Y. Altunkaynak and M. Canpolat, “Use of Orange Peel Waste in Removal of Nickel(II) Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies,” J. Adv. Res. Nat. Appl. Sci., vol. 8, no. 2, pp. 322–339, Jun. 2022, doi: 10.28979/jarnas.1000133.
  • [17] Y. Altunkaynak and M. Canpolat, “Removal of Manganese (II) Ions from Aqueous Solutions with Raw Orange Peel: Equilibrium, Kinetic and Thermodynamic Studies,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 22, no. 1. pp. 45–56, 2022. doi: 10.35414/akufemubid.1032148.
  • [18] O. O. Joseph and K. O. Babaremu, “Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): A review,” Fibers, vol. 7, no. 4, 2019, doi: 10.3390/fib7040033.
  • [19] I. Peter P, M. Oki, and A. Adekunle A, “A review of ceramic/bio-based hybrid reinforced aluminium matrix composites,” Cogent Eng., vol. 7, no. 1, 2020, doi: 10.1080/23311916.2020.1727167.
  • [20] Y. G. Yashas, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S. M. Rangappa, and S. Siengchin, “Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass,” J. Compos. Sci., vol. 7, no. 6, 2023, doi: 10.3390/jcs7060242.
  • [21] D. Puglia, D. Pezzolla, G. Gigliotti, L. Torre, M. L. Bartucca, and D. Del Buono, “The Opportunity of Valorizing Agricultural Waste, Through Its Conversion Into Biostimulants, Biofertilizers, and Biopolymers,” Sustainability. 2021. doi: 10.3390/su13052710.
  • [22] S. Pemas, D. Gkiliopoulos, C. Samiotaki, D. N. Bikiaris, Z. Terzopoulou, and E. M. Pechlivani, “Valorization of Tomato Agricultural Waste for 3d-Printed Polymer Composites Based on Poly(lactic Acid),” Polymers. 2024. doi: 10.3390/polym16111536.
  • [23] D. Fico, D. Rizzo, V. De Carolis, and C. Esposito Corcione, “Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing,” Materials. 2024. doi: 10.3390/ma17061260.
  • [24] A. O. Ibhadode, “Engine Lightweighting: Use of Green Materials as Reinforcement in Aluminum Metal Matrix Composites.” 2023. doi: 10.5772/intechopen.108273.
  • [25] N. Bandara and K. Gajasinghe, “Insights of Circular Economics Practices in Rice Cultivation and Processing - A Review,” Journal of Agriculture and Value Addition. 2023. doi: 10.4038/java.v6i2.79.
  • [26] R. Dungani et al., Bionanomaterial from agricultural waste and its application. Elsevier Ltd, 2017. doi: 10.1016/B978-0-08-100957-4.00003-6.
  • [27] E. Chiellini, P. Cinelli, S. H. Imam, and L. Mao, “Composite Films Based on Biorelated Agro-Industrial Waste and Poly(vinyl alcohol). Preparation and Mechanical Properties Characterization,” Biomacromolecules, vol. 2, no. 3, pp. 1029–1037, Sep. 2001, doi: 10.1021/bm010084j.
  • [28] A. G. de Souza, R. F. S. Barbosa, and D. S. Rosa, “Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites,” J. Polym. Environ., vol. 28, no. 7, pp. 1851–1868, Jul. 2020, doi: 10.1007/s10924-020-01731-w.
  • [29] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer composite materials: A comprehensive review,” Compos. Struct., vol. 262, p. 113640, Apr. 2021, doi: 10.1016/j.compstruct.2021.113640.
  • [30] W. Obande, C. M. Ó Brádaigh, and D. Ray, “Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion – A review,” Compos. Part B Eng., vol. 215, p. 108771, Jun. 2021, doi: 10.1016/j.compositesb.2021.108771.
  • [31] J.-M. Raquez, M. Deléglise, M.-F. Lacrampe, and P. Krawczak, “Thermosetting (bio)materials derived from renewable resources: A critical review,” Prog. Polym. Sci., vol. 35, no. 4, pp. 487–509, Apr. 2010, doi: 10.1016/j.progpolymsci.2010.01.001.
  • [32] X. Liu et al., “Ultrastrong and High‐Tough Thermoset Epoxy Resins from Hyperbranched Topological Structure and Subnanoscaled Free Volume,” Adv. Mater., vol. 36, no. 9, Mar. 2024, doi: 10.1002/adma.202308434.
  • [33] G. Rajeshkumar et al., “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review,” J. Clean. Prod., vol. 310, p. 127483, Aug. 2021, doi: 10.1016/j.jclepro.2021.127483.
  • [34] L. Yu, K. Dean, and L. Li, “Polymer blends and composites from renewable resources,” Prog. Polym. Sci., vol. 31, no. 6, pp. 576–602, Jun. 2006, doi: 10.1016/j.progpolymsci.2006.03.002.
  • [35] E. Chiellini, P. Cinelli, F. Chiellini, and S. H. Imam, “Environmentally Degradable Bio‐Based Polymeric Blends and Composites,” Macromol. Biosci., vol. 4, no. 3, pp. 218–231, Mar. 2004, doi: 10.1002/mabi.200300126.
  • [36] M. S. Bulut, M. Ordu, O. Der, and G. Basar, “Sustainable Thermoplastic Material Selection for Hybrid Vehicle Battery Packs in the Automotive Industry: A Comparative Multi-Criteria Decision-Making Approach,” Polymers (Basel)., vol. 16, no. 19, 2024, doi: 10.3390/polym16192768.
  • [37] R. Kumar, K. N. Bairwa, and T. K. Sharma, “Optimization in Flexural and Physical Behavior of Agricultural Waste Reinforced Epoxy Based Polymer Matrix Composite by Taguchi Technique,” Evergreen, vol. 10, no. 4, pp. 2607–2613, 2023, doi: 10.5109/7160916.
  • [38] N. Hongsriphan, J. Subsanga, P. Suebsai, S. Sitthipong, and P. Patanathabutr, “Use of oil palm frond waste to reinforce poly(lactic acid) based composites with the improvement of interfacial adhesion by alkali treatment,” J. Met. Mater. Miner., vol. 32, no. 1, pp. 134–143, 2022, doi: 10.55713/jmmm.v32i1.1244.
  • [39] A. Ashori and A. Nourbakhsh, “Bio-based composites from waste agricultural residues,” Waste Manag., vol. 30, no. 4, pp. 680–684, Apr. 2010, doi: 10.1016/j.wasman.2009.08.003.
  • [40] M. Suffo, M. de la Mata, and S. I. Molina, “A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials,” J. Clean. Prod., vol. 257, p. 120382, Jun. 2020, doi: 10.1016/j.jclepro.2020.120382.
  • [41] M. Barczewski, K. Sałasińska, and J. Szulc, “Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties,” Polym. Test., vol. 75, pp. 1–11, May 2019, doi: 10.1016/j.polymertesting.2019.01.017.
  • [42] M. A. Suhot, M. Z. Hassan, S. A. Aziz, and M. Y. Md Daud, “Recent Progress of Rice Husk Reinforced Polymer Composites: A Review,” Polymers (Basel)., vol. 13, no. 15, p. 2391, Jul. 2021, doi: 10.3390/polym13152391.
  • [43] Z. Seikh, M. Sekh, S. Kunar, G. Kibria, R. Haque, and S. Haidar, “Rice Husk Ash Reinforced Aluminium Metal Matrix Composites: A Review,” Mater. Sci. Forum, vol. 1070, pp. 55–70, 2022, doi: 10.4028/p-u8s016.
  • [44] P. P. Kulkarni, B. Siddeswarappa, and K. S. H. Kumar, “A Survey on Effect of Agro Waste Ash as Reinforcement on Aluminium Base Metal Matrix Composites,” Open J. Compos. Mater., vol. 09, no. 03, pp. 312–326, 2019, doi: 10.4236/ojcm.2019.93019.
  • [45] K. Anitha and S. Senthilselvan, “Agricultural Waste Materials Applications in Building Industry – An Overview,” Ecs Transactions. 2022. doi: 10.1149/10701.2371ecst.
  • [46] N. C. Amulah, A. M. El-Jummah, A. A. Hammajam, and U. Ibrahim, “Experimental Investigation on the Thermal Properties of Gypsum Plaster-Rice Husk Ash Composite,” Open Journal of Composite Materials. 2022. doi: 10.4236/ojcm.2022.124010.
  • [47] A. E. Eladawi and A. H. Rajpar, “Investigation of Mechanical Properties for Reinforced Polyester Composites With Palm Fronds,” Journal of Materials Science and Chemical Engineering. 2020. doi: 10.4236/msce.2020.83006.
  • [48] U. V Akhil, N. Radhika, B. Saleh, S. A. Krishna, N. Noble, and L. Rajeshkumar, “A Comprehensive Review on Plant‐based Natural Fiber Reinforced Polymer Composites: Fabrication, Properties, and Applications,” Polymer Composites. 2023. doi: 10.1002/pc.27274.
  • [49] W. Liu et al., “Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites,” Journal of Applied Polymer Science, vol. 134, no. 13. 2017. doi: 10.1002/app.44644.
  • [50] P. Cinelli, M. Seggiani, N. Mallegni, V. Gigante, and A. Lazzeri, “Processability and Degradability of PHA-Based Composites in Terrestrial Environments,” International Journal of Molecular Sciences. 2019. doi: 10.3390/ijms20020284.
  • [51] M. Noryani, S. M. Sapuan, M. T. Mastura, M. Y. M. Zuhri, and E. S. Zainudin, “Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach,” J. Renew. Mater., vol. 7, no. 11, pp. 1165–1179, 2019, doi: 10.32604/jrm.2019.07691.
  • [52] A. Karimah et al., “A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations,” J. Mater. Res. Technol., vol. 13, pp. 2442–2458, Jul. 2021, doi: 10.1016/j.jmrt.2021.06.014.
  • [53] H. P. S. Abdul Khalil, M. Siti Alwani, R. Ridzuan, H. Kamarudin, and A. Khairul, “Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers,” Polym. Plast. Technol. Eng., vol. 47, no. 3, pp. 273–280, Feb. 2008, doi: 10.1080/03602550701866840.
  • [54] A. H. Hemmasi, H. Khademi-Eslam, S. Pourabbasi, I. Ghasemi, and M. Talaiepour, “Cell morphology and physico-mechanical properties of HDPE/EVA/Rice hull hybrid foamed composites,” BioResources, vol. 6, no. 3, pp. 2291–2308, 2011, doi: 10.15376/biores.6.3.2291-2308.
  • [55] C. Driemeier, W. D. Santos, and M. S. Buckeridge, “Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability,” Cellulose, vol. 19, no. 5, pp. 1507–1515, 2012, doi: 10.1007/s10570-012-9743-z.
  • [56] M. S. Alwani, H. P. S. A. Khalil, N. Islam, O. Sulaiman, A. Zaidon, and R. Dungani, “Microstructural Study, Tensile Properties, and Scanning Electron Microscopy Fractography Failure Analysis of Various Agricultural Residue Fibers,” J. Nat. Fibers, vol. 12, no. 2, pp. 154–168, Mar. 2015, doi: 10.1080/15440478.2014.905216.
  • [57] M. Sakthivel and S. Ramesh, “Mechanical properties of natural fibre (banana, coir, sisal),” Sci Park, vol. 1, no. 1, pp. 1 – 6, 2013.
  • [58] M. Bouasker, N. Belayachi, D. Hoxha, and M. Al-Mukhtar, “Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications,” Materials (Basel)., vol. 7, no. 4, pp. 3034–3048, 2014, doi: 10.3390/ma7043034.
  • [59] N. Reddy and Y. Yang, “Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw,” J. Agric. Food Chem., vol. 54, no. 21, pp. 8077–8081, Oct. 2006, doi: 10.1021/jf0617723.
  • [60] C. Alves, P. M. C. Ferrão, M. Freitas, A. J. Silva, S. M. Luz, and D. E. Alves, “Sustainable design procedure: The role of composite materials to combine mechanical and environmental features for agricultural machines,” Mater. Des., vol. 30, no. 10, pp. 4060–4068, 2009, doi: https://doi.org/10.1016/j.matdes.2009.05.015.
  • [61] S. Sathees Kumar, B. Sridhar Babu, C. N. Chankravarthy, and N. Prabhakar, “Review on natural fiber polymer composites,” Mater. Today Proc., vol. 46, no. 2, pp. 777–782, 2021, doi: 10.1016/j.matpr.2020.12.599.
  • [62] P. Wambua, J. Ivens, and I. Verpoest, “Natural fibres: can they replace glass in fibre reinforced plastics?,” Compos. Sci. Technol., vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://doi.org/10.1016/S0266-3538(03)00096-4.
  • [63] S. S. Munawar, K. Umemura, and S. Kawai, “Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles,” J. Wood Sci., vol. 53, no. 2, pp. 108–113, 2007, doi: 10.1007/s10086-006-0836-x.
  • [64] A. R. Rathod, “Analysis of Physical Characteristics of Bamboo Fabrics,” Int. J. Res. Eng. Technol., vol. 03, no. 08, pp. 21–25, 2014, doi: 10.15623/ijret.2014.0308004.
  • [65] S. Chaiarrekij, A. Apirakchaiskul, K. Suvarnakich, and S. Kiatkamjornwong, “Kapok I: Characteristcs of kapok fiber as a potential pulp source for papermaking,” BioResources, vol. 7, no. 1, pp. 475–488, 2012, doi: 10.15376/biores.7.1.475-488.
  • [66] L. Y. Mwaikambo and M. P. Ansell, “The determination of porosity and cellulose content of plant fibers by density methods,” J. Mater. Sci. Lett., vol. 20, no. 23, pp. 2095 – 2096, 2001, doi: 10.1023/A:1013703809964.
  • [67] B. Babu, J. Bensam Raj, R. Jeya Raj, and X. Roshan Xavier, “Investigation on the mechanical properties of natural composites made with Indian almond fiber and neem seed particulates,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 237, no. 17, pp. 3908–3915, Apr. 2023, doi: 10.1177/09544062231167018.
  • [68] M. C. Lee et al., “Properties of Poly(lactic Acid)/Durian Husk Fiber Biocomposites: Effects of Fiber Content and Processing Aid,” Journal of Thermoplastic Composite Materials. 2019. doi: 10.1177/0892705719831734.
  • [69] R. Phiri, M. R. Sanjay, S. Siengchin, O. P. Oladijo, and H. N. Dhakal, “Development of Sustainable Biopolymer-Based Composites for Lightweight Applications From Agricultural Waste Biomass: A Review,” Advanced Industrial and Engineering Polymer Research. 2023. doi: 10.1016/j.aiepr.2023.04.004.
  • [70] E. Elsacker, S. Vandelook, A. Van Wylick, J. Ruytinx, L. De Laêt, and E. Peeters, “A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites,” The Science of the Total Environment. 2020. doi: 10.1016/j.scitotenv.2020.138431.
  • [71] Y. K. Abdallah and A. T. Estévez, “Biowelding 3d-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus Ostreatus Mycelium,” Biomimetics. 2023. doi: 10.3390/biomimetics8060504.
  • [72] D. Lestari et al., “Durability to Natural Weathering of Methylene Diphenyl Diisocyanate-Bonded Bamboo Oriented Strand Board,” Jurnal Sylva Lestari. 2024. doi: 10.23960/jsl.v12i1.839.
  • [73] S. C. Koay and S. Husseinsyah, “Agrowaste-Based Composites From Cocoa Pod Husk and Polypropylene,” Journal of Thermoplastic Composite Materials. 2016. doi: 10.1177/0892705714563125.
  • [74] A. M. Rahman, A. Bhardwaj, J. G. Vasselli, Z. Pei, and B. D. Shaw, “Three-Dimensional Printing of Biomass–Fungi Biocomposite Materials: The Effects of Mixing and Printing Parameters on Fungal Growth,” Journal of Manufacturing and Materials Processing. 2023. doi: 10.3390/jmmp8010002.
  • [75] R. V. Patel, A. Yadav, and J. Winczek, “Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications,” Appl. Sci., vol. 13, no. 8, p. 5126, Apr. 2023, doi: 10.3390/app13085126.
  • [76] C. Maraveas, “Production of sustainable and biodegradable polymers from agricultural waste,” Polymers (Basel)., vol. 12, no. 5, 2020, doi: 10.3390/POLYM12051127.
  • [77] Christyanne Faye San Juan, “Sustainable Packaging Solutions for Eco-Conscious Consumers and Businesses,” Paper Mart, 2023.
  • [78] D. Bolcu, M. M. Stănescu, and C. M. Miriţoiu, “Some Mechanical Properties of Composite Materials With Chopped Wheat Straw Reinforcer and Hybrid Matrix,” Polymers. 2022. doi: 10.3390/polym14153175.
  • [79] M. P. Jones et al., “Waste‐derived Low‐cost Mycelium Composite Construction Materials With Improved Fire Safety,” Fire and Materials. 2018. doi: 10.1002/fam.2637.
  • [80] N. S. F. Azman and Z. Romli, “Alternative Pineapple Fibre Advancement in Furniture Design,” Environment-Behaviour Proceedings Journal. 2024. doi: 10.21834/e-bpj.v9isi17.5434.
  • [81] X. Hanyue, M. T. H. Sultan, M. I. Najeeb, and F. S. Shahar, “A Short Review on the Recent Progress and Properties of Pineapple Leaf Fiber Reinforced Composite,” E3s Web of Conferences. 2024. doi: 10.1051/e3sconf/202447700096.
  • [82] J. T. Aladejana, Z. Wu, and M. Fan, “Key Advances in Development of Straw Fibre Bio-Composite Boards: An Overview,” Materials Research Express. 2020. doi: 10.1088/2053-1591/ab66ec.
  • [83] Ş. Yıldızhan, A. Çalık, M. Özcanlı, and H. Serin, “Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications,” European Mechanical Science, 2018.
  • [84] Y. Wang, C. Liu, X. Zhang, and S. Zeng, “Research on Sustainable Furniture Design Based on Waste Textiles Recycling,” Sustainability. 2023. doi: 10.3390/su15043601.
  • [85] G. Singh, M. K. Gupta, S. Chaurasiya, V. S. Sharma, and D. Y. Pimenov, “Rice straw burning: a review on its global prevalence and the sustainable alternatives for its effective mitigation,” Environ. Sci. Pollut. Res., vol. 28, no. 25, pp. 32125–32155, Jul. 2021, doi: 10.1007/s11356-021-14163-3.

Agricultural Waste-Based Composite Materials: Recycling Processes, Technical Properties, and Industrial Applications

Yıl 2024, Cilt: 14 Sayı: 2, 136 - 145

Öz

The transformation of agricultural waste into eco-friendly, lightweight, durable, and biodegradable composite materials supports sustainable production processes and presents new opportunities as alternatives to traditional materials. These composites offer significant advantages, particularly in terms of energy savings, low cost, and minimizing environmental impact. Widely used in industrial applications, these composites contribute to sustainable development goals by serving as insulation materials in construction, interior components and body panels in the automotive industry, biodegradable packaging materials, decorative elements and outdoor furniture in the furniture industry, and plant pots and mulch in agriculture. The broader adoption of agricultural waste-based composites in industrial applications not only offers potential solutions to waste management challenges but also represents a critical step toward enhancing environmental sustainability. This study aims to examine the potential of agricultural waste-based composite materials across various industrial applications. Within this scope, the uses of biodegradable composite materials, recycled from agricultural waste, are detailed across sectors such as construction, automotive, packaging, furniture, and agriculture.

Kaynakça

  • [1]R. Y. Venkataravanappa, A. Lakshmikanthan, N. Kapilan, M. P. G. Chandrashekarappa, O. Der, and A. Ercetin, “Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites,” J. Compos. Sci., vol. 7, no. 7, 2023, doi: 10.3390/jcs7070266.
  • [2] O. Anozie and N. Ifeanyi, “Evaluation of the Physico-Mechanical Properties of Polyester/Corn Stalk Composite,” Poljopr. Teh., 2022, doi: 10.5937/poljteh2203009o.
  • [3] A. M. Youssef, M. S. Hasanin, M. E. A. El-Aziz, and O. M. Darwesh, “Green, Economic, and Partially Biodegradable Wood Plastic Composites via Enzymatic Surface Modification of Lignocellulosic Fibers,” Heliyon, 2019, doi: 10.1016/j.heliyon.2019.e01332.
  • [4] H. Serin, G. Güzel, U. Kumlu, and M. A. Akar, “Potential of Using Agricultural Waste Composites as Thermal Insulation Material,” Macromol. Symp., 2022, doi: 10.1002/masy.202100409.
  • [5] G. A. K. Gürdil, M. Mengstu, and A. Kakarash, “Utilization of Agricultural Wastes for Sustainable Development,” Black Sea Journal of Agriculture. 2021. doi: 10.47115/bsagriculture.953415.
  • [6] F. S. Shahar, M. T. H. Sultan, A. Łukaszewicz, and R. A. Grzejda, “A Review on Agricultural Wastes and Pineapple Leaf Fibers in UAVs Airframe Manufacturing,” Preprints, 2023, doi: https://doi.org/10.20944/preprints202307.1813.v1.
  • [7] D. Koçak, H. Olcay, and Z. Yildiz, “Mechanical and Acoustic Properties of Alkali Treated Agricultural Waste Reinforced Sustainable Polyurethane Composites,” Journal of Reinforced Plastics and Composites. 2022. doi: 10.1177/07316844221147641.
  • [8] U. I. A. B. M. Adnan, F. R. Wong, M. F. Morni, A. H. Abdullah, A. A. Rashid, and S. K. Yong, “Mechanical Properties of Rice Husk-Recycled Polypropylene Composite,” J. Mech. Eng., vol. 12, no. 1, pp. 45–61, 2023, doi: 10.24191/JMECHE.V12I1.24637.
  • [9] R. Muthuraj, C. Lacoste, P. Lacroix, and A. Bergeret, “Sustainable Thermal Insulation Biocomposites From Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Performances Evaluation,” Industrial Crops and Products. 2019. doi: 10.1016/j.indcrop.2019.04.053.
  • [10] L. Yang, D. Park, and Z. Qin, “Material Function of Mycelium-Based Bio-Composite: A Review,” Front. Mater., 2021, doi: 10.3389/fmats.2021.737377.
  • [11] C. Nyambo, A. K. Mohanty, and M. Misra, “Polylactide-Based Renewable Green Composites From Agricultural Residues and Their Hybrids,” Biomacromolecules. 2010. doi: 10.1021/bm1003114.
  • [12] A. M. Nermin and D. E. El-Nashar, “The Influence of Using Agriculture Wastes as Reinforcing Fillers on Hybrid Biocomposites Properties.” 2019. doi: 10.21825/autex.63876.
  • [13] G. U. Raju and S. Kumarappa, “Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled With Agricultural Residue,” Polymers From Renewable Resources. 2012. doi: 10.1177/204124791200300303.
  • [14] S. Manivannan, R. Venkatesh, M. Kubendiran, C. R. Kannan, N. Karthikeyan, and S. Naveen, “Conservation of Waste Melon Shell and Fly Ash Utilized as Reinforcements for Aluminum Alloy Matrix in Terrestrial Ecosystem Acquired Green Hybrid Composites,” Environmental Quality Management. 2023. doi: 10.1002/tqem.21990.
  • [15] C. H. S. N. G. Velmurugana, Jasgurpreet Singh Chohan, M. Abhilakshmi, S. Harikaran, M.B Shakthi dharshini, “A Short Review on the Growth of Lightweight Agronomic Surplus Biomass Composites for Ecological Applications Using Biopolymers,” Int. Res. J. Multidiscip. Technovation, vol. 6, no. 1, pp. 140–154, Jan. 2024, doi: 10.54392/irjmt24111.
  • [16] Y. Altunkaynak and M. Canpolat, “Use of Orange Peel Waste in Removal of Nickel(II) Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies,” J. Adv. Res. Nat. Appl. Sci., vol. 8, no. 2, pp. 322–339, Jun. 2022, doi: 10.28979/jarnas.1000133.
  • [17] Y. Altunkaynak and M. Canpolat, “Removal of Manganese (II) Ions from Aqueous Solutions with Raw Orange Peel: Equilibrium, Kinetic and Thermodynamic Studies,” Afyon Kocatepe University Journal of Sciences and Engineering, vol. 22, no. 1. pp. 45–56, 2022. doi: 10.35414/akufemubid.1032148.
  • [18] O. O. Joseph and K. O. Babaremu, “Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): A review,” Fibers, vol. 7, no. 4, 2019, doi: 10.3390/fib7040033.
  • [19] I. Peter P, M. Oki, and A. Adekunle A, “A review of ceramic/bio-based hybrid reinforced aluminium matrix composites,” Cogent Eng., vol. 7, no. 1, 2020, doi: 10.1080/23311916.2020.1727167.
  • [20] Y. G. Yashas, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S. M. Rangappa, and S. Siengchin, “Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass,” J. Compos. Sci., vol. 7, no. 6, 2023, doi: 10.3390/jcs7060242.
  • [21] D. Puglia, D. Pezzolla, G. Gigliotti, L. Torre, M. L. Bartucca, and D. Del Buono, “The Opportunity of Valorizing Agricultural Waste, Through Its Conversion Into Biostimulants, Biofertilizers, and Biopolymers,” Sustainability. 2021. doi: 10.3390/su13052710.
  • [22] S. Pemas, D. Gkiliopoulos, C. Samiotaki, D. N. Bikiaris, Z. Terzopoulou, and E. M. Pechlivani, “Valorization of Tomato Agricultural Waste for 3d-Printed Polymer Composites Based on Poly(lactic Acid),” Polymers. 2024. doi: 10.3390/polym16111536.
  • [23] D. Fico, D. Rizzo, V. De Carolis, and C. Esposito Corcione, “Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing,” Materials. 2024. doi: 10.3390/ma17061260.
  • [24] A. O. Ibhadode, “Engine Lightweighting: Use of Green Materials as Reinforcement in Aluminum Metal Matrix Composites.” 2023. doi: 10.5772/intechopen.108273.
  • [25] N. Bandara and K. Gajasinghe, “Insights of Circular Economics Practices in Rice Cultivation and Processing - A Review,” Journal of Agriculture and Value Addition. 2023. doi: 10.4038/java.v6i2.79.
  • [26] R. Dungani et al., Bionanomaterial from agricultural waste and its application. Elsevier Ltd, 2017. doi: 10.1016/B978-0-08-100957-4.00003-6.
  • [27] E. Chiellini, P. Cinelli, S. H. Imam, and L. Mao, “Composite Films Based on Biorelated Agro-Industrial Waste and Poly(vinyl alcohol). Preparation and Mechanical Properties Characterization,” Biomacromolecules, vol. 2, no. 3, pp. 1029–1037, Sep. 2001, doi: 10.1021/bm010084j.
  • [28] A. G. de Souza, R. F. S. Barbosa, and D. S. Rosa, “Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites,” J. Polym. Environ., vol. 28, no. 7, pp. 1851–1868, Jul. 2020, doi: 10.1007/s10924-020-01731-w.
  • [29] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer composite materials: A comprehensive review,” Compos. Struct., vol. 262, p. 113640, Apr. 2021, doi: 10.1016/j.compstruct.2021.113640.
  • [30] W. Obande, C. M. Ó Brádaigh, and D. Ray, “Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion – A review,” Compos. Part B Eng., vol. 215, p. 108771, Jun. 2021, doi: 10.1016/j.compositesb.2021.108771.
  • [31] J.-M. Raquez, M. Deléglise, M.-F. Lacrampe, and P. Krawczak, “Thermosetting (bio)materials derived from renewable resources: A critical review,” Prog. Polym. Sci., vol. 35, no. 4, pp. 487–509, Apr. 2010, doi: 10.1016/j.progpolymsci.2010.01.001.
  • [32] X. Liu et al., “Ultrastrong and High‐Tough Thermoset Epoxy Resins from Hyperbranched Topological Structure and Subnanoscaled Free Volume,” Adv. Mater., vol. 36, no. 9, Mar. 2024, doi: 10.1002/adma.202308434.
  • [33] G. Rajeshkumar et al., “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review,” J. Clean. Prod., vol. 310, p. 127483, Aug. 2021, doi: 10.1016/j.jclepro.2021.127483.
  • [34] L. Yu, K. Dean, and L. Li, “Polymer blends and composites from renewable resources,” Prog. Polym. Sci., vol. 31, no. 6, pp. 576–602, Jun. 2006, doi: 10.1016/j.progpolymsci.2006.03.002.
  • [35] E. Chiellini, P. Cinelli, F. Chiellini, and S. H. Imam, “Environmentally Degradable Bio‐Based Polymeric Blends and Composites,” Macromol. Biosci., vol. 4, no. 3, pp. 218–231, Mar. 2004, doi: 10.1002/mabi.200300126.
  • [36] M. S. Bulut, M. Ordu, O. Der, and G. Basar, “Sustainable Thermoplastic Material Selection for Hybrid Vehicle Battery Packs in the Automotive Industry: A Comparative Multi-Criteria Decision-Making Approach,” Polymers (Basel)., vol. 16, no. 19, 2024, doi: 10.3390/polym16192768.
  • [37] R. Kumar, K. N. Bairwa, and T. K. Sharma, “Optimization in Flexural and Physical Behavior of Agricultural Waste Reinforced Epoxy Based Polymer Matrix Composite by Taguchi Technique,” Evergreen, vol. 10, no. 4, pp. 2607–2613, 2023, doi: 10.5109/7160916.
  • [38] N. Hongsriphan, J. Subsanga, P. Suebsai, S. Sitthipong, and P. Patanathabutr, “Use of oil palm frond waste to reinforce poly(lactic acid) based composites with the improvement of interfacial adhesion by alkali treatment,” J. Met. Mater. Miner., vol. 32, no. 1, pp. 134–143, 2022, doi: 10.55713/jmmm.v32i1.1244.
  • [39] A. Ashori and A. Nourbakhsh, “Bio-based composites from waste agricultural residues,” Waste Manag., vol. 30, no. 4, pp. 680–684, Apr. 2010, doi: 10.1016/j.wasman.2009.08.003.
  • [40] M. Suffo, M. de la Mata, and S. I. Molina, “A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials,” J. Clean. Prod., vol. 257, p. 120382, Jun. 2020, doi: 10.1016/j.jclepro.2020.120382.
  • [41] M. Barczewski, K. Sałasińska, and J. Szulc, “Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties,” Polym. Test., vol. 75, pp. 1–11, May 2019, doi: 10.1016/j.polymertesting.2019.01.017.
  • [42] M. A. Suhot, M. Z. Hassan, S. A. Aziz, and M. Y. Md Daud, “Recent Progress of Rice Husk Reinforced Polymer Composites: A Review,” Polymers (Basel)., vol. 13, no. 15, p. 2391, Jul. 2021, doi: 10.3390/polym13152391.
  • [43] Z. Seikh, M. Sekh, S. Kunar, G. Kibria, R. Haque, and S. Haidar, “Rice Husk Ash Reinforced Aluminium Metal Matrix Composites: A Review,” Mater. Sci. Forum, vol. 1070, pp. 55–70, 2022, doi: 10.4028/p-u8s016.
  • [44] P. P. Kulkarni, B. Siddeswarappa, and K. S. H. Kumar, “A Survey on Effect of Agro Waste Ash as Reinforcement on Aluminium Base Metal Matrix Composites,” Open J. Compos. Mater., vol. 09, no. 03, pp. 312–326, 2019, doi: 10.4236/ojcm.2019.93019.
  • [45] K. Anitha and S. Senthilselvan, “Agricultural Waste Materials Applications in Building Industry – An Overview,” Ecs Transactions. 2022. doi: 10.1149/10701.2371ecst.
  • [46] N. C. Amulah, A. M. El-Jummah, A. A. Hammajam, and U. Ibrahim, “Experimental Investigation on the Thermal Properties of Gypsum Plaster-Rice Husk Ash Composite,” Open Journal of Composite Materials. 2022. doi: 10.4236/ojcm.2022.124010.
  • [47] A. E. Eladawi and A. H. Rajpar, “Investigation of Mechanical Properties for Reinforced Polyester Composites With Palm Fronds,” Journal of Materials Science and Chemical Engineering. 2020. doi: 10.4236/msce.2020.83006.
  • [48] U. V Akhil, N. Radhika, B. Saleh, S. A. Krishna, N. Noble, and L. Rajeshkumar, “A Comprehensive Review on Plant‐based Natural Fiber Reinforced Polymer Composites: Fabrication, Properties, and Applications,” Polymer Composites. 2023. doi: 10.1002/pc.27274.
  • [49] W. Liu et al., “Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites,” Journal of Applied Polymer Science, vol. 134, no. 13. 2017. doi: 10.1002/app.44644.
  • [50] P. Cinelli, M. Seggiani, N. Mallegni, V. Gigante, and A. Lazzeri, “Processability and Degradability of PHA-Based Composites in Terrestrial Environments,” International Journal of Molecular Sciences. 2019. doi: 10.3390/ijms20020284.
  • [51] M. Noryani, S. M. Sapuan, M. T. Mastura, M. Y. M. Zuhri, and E. S. Zainudin, “Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach,” J. Renew. Mater., vol. 7, no. 11, pp. 1165–1179, 2019, doi: 10.32604/jrm.2019.07691.
  • [52] A. Karimah et al., “A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations,” J. Mater. Res. Technol., vol. 13, pp. 2442–2458, Jul. 2021, doi: 10.1016/j.jmrt.2021.06.014.
  • [53] H. P. S. Abdul Khalil, M. Siti Alwani, R. Ridzuan, H. Kamarudin, and A. Khairul, “Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers,” Polym. Plast. Technol. Eng., vol. 47, no. 3, pp. 273–280, Feb. 2008, doi: 10.1080/03602550701866840.
  • [54] A. H. Hemmasi, H. Khademi-Eslam, S. Pourabbasi, I. Ghasemi, and M. Talaiepour, “Cell morphology and physico-mechanical properties of HDPE/EVA/Rice hull hybrid foamed composites,” BioResources, vol. 6, no. 3, pp. 2291–2308, 2011, doi: 10.15376/biores.6.3.2291-2308.
  • [55] C. Driemeier, W. D. Santos, and M. S. Buckeridge, “Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability,” Cellulose, vol. 19, no. 5, pp. 1507–1515, 2012, doi: 10.1007/s10570-012-9743-z.
  • [56] M. S. Alwani, H. P. S. A. Khalil, N. Islam, O. Sulaiman, A. Zaidon, and R. Dungani, “Microstructural Study, Tensile Properties, and Scanning Electron Microscopy Fractography Failure Analysis of Various Agricultural Residue Fibers,” J. Nat. Fibers, vol. 12, no. 2, pp. 154–168, Mar. 2015, doi: 10.1080/15440478.2014.905216.
  • [57] M. Sakthivel and S. Ramesh, “Mechanical properties of natural fibre (banana, coir, sisal),” Sci Park, vol. 1, no. 1, pp. 1 – 6, 2013.
  • [58] M. Bouasker, N. Belayachi, D. Hoxha, and M. Al-Mukhtar, “Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications,” Materials (Basel)., vol. 7, no. 4, pp. 3034–3048, 2014, doi: 10.3390/ma7043034.
  • [59] N. Reddy and Y. Yang, “Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw,” J. Agric. Food Chem., vol. 54, no. 21, pp. 8077–8081, Oct. 2006, doi: 10.1021/jf0617723.
  • [60] C. Alves, P. M. C. Ferrão, M. Freitas, A. J. Silva, S. M. Luz, and D. E. Alves, “Sustainable design procedure: The role of composite materials to combine mechanical and environmental features for agricultural machines,” Mater. Des., vol. 30, no. 10, pp. 4060–4068, 2009, doi: https://doi.org/10.1016/j.matdes.2009.05.015.
  • [61] S. Sathees Kumar, B. Sridhar Babu, C. N. Chankravarthy, and N. Prabhakar, “Review on natural fiber polymer composites,” Mater. Today Proc., vol. 46, no. 2, pp. 777–782, 2021, doi: 10.1016/j.matpr.2020.12.599.
  • [62] P. Wambua, J. Ivens, and I. Verpoest, “Natural fibres: can they replace glass in fibre reinforced plastics?,” Compos. Sci. Technol., vol. 63, no. 9, pp. 1259–1264, 2003, doi: https://doi.org/10.1016/S0266-3538(03)00096-4.
  • [63] S. S. Munawar, K. Umemura, and S. Kawai, “Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles,” J. Wood Sci., vol. 53, no. 2, pp. 108–113, 2007, doi: 10.1007/s10086-006-0836-x.
  • [64] A. R. Rathod, “Analysis of Physical Characteristics of Bamboo Fabrics,” Int. J. Res. Eng. Technol., vol. 03, no. 08, pp. 21–25, 2014, doi: 10.15623/ijret.2014.0308004.
  • [65] S. Chaiarrekij, A. Apirakchaiskul, K. Suvarnakich, and S. Kiatkamjornwong, “Kapok I: Characteristcs of kapok fiber as a potential pulp source for papermaking,” BioResources, vol. 7, no. 1, pp. 475–488, 2012, doi: 10.15376/biores.7.1.475-488.
  • [66] L. Y. Mwaikambo and M. P. Ansell, “The determination of porosity and cellulose content of plant fibers by density methods,” J. Mater. Sci. Lett., vol. 20, no. 23, pp. 2095 – 2096, 2001, doi: 10.1023/A:1013703809964.
  • [67] B. Babu, J. Bensam Raj, R. Jeya Raj, and X. Roshan Xavier, “Investigation on the mechanical properties of natural composites made with Indian almond fiber and neem seed particulates,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 237, no. 17, pp. 3908–3915, Apr. 2023, doi: 10.1177/09544062231167018.
  • [68] M. C. Lee et al., “Properties of Poly(lactic Acid)/Durian Husk Fiber Biocomposites: Effects of Fiber Content and Processing Aid,” Journal of Thermoplastic Composite Materials. 2019. doi: 10.1177/0892705719831734.
  • [69] R. Phiri, M. R. Sanjay, S. Siengchin, O. P. Oladijo, and H. N. Dhakal, “Development of Sustainable Biopolymer-Based Composites for Lightweight Applications From Agricultural Waste Biomass: A Review,” Advanced Industrial and Engineering Polymer Research. 2023. doi: 10.1016/j.aiepr.2023.04.004.
  • [70] E. Elsacker, S. Vandelook, A. Van Wylick, J. Ruytinx, L. De Laêt, and E. Peeters, “A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites,” The Science of the Total Environment. 2020. doi: 10.1016/j.scitotenv.2020.138431.
  • [71] Y. K. Abdallah and A. T. Estévez, “Biowelding 3d-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus Ostreatus Mycelium,” Biomimetics. 2023. doi: 10.3390/biomimetics8060504.
  • [72] D. Lestari et al., “Durability to Natural Weathering of Methylene Diphenyl Diisocyanate-Bonded Bamboo Oriented Strand Board,” Jurnal Sylva Lestari. 2024. doi: 10.23960/jsl.v12i1.839.
  • [73] S. C. Koay and S. Husseinsyah, “Agrowaste-Based Composites From Cocoa Pod Husk and Polypropylene,” Journal of Thermoplastic Composite Materials. 2016. doi: 10.1177/0892705714563125.
  • [74] A. M. Rahman, A. Bhardwaj, J. G. Vasselli, Z. Pei, and B. D. Shaw, “Three-Dimensional Printing of Biomass–Fungi Biocomposite Materials: The Effects of Mixing and Printing Parameters on Fungal Growth,” Journal of Manufacturing and Materials Processing. 2023. doi: 10.3390/jmmp8010002.
  • [75] R. V. Patel, A. Yadav, and J. Winczek, “Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications,” Appl. Sci., vol. 13, no. 8, p. 5126, Apr. 2023, doi: 10.3390/app13085126.
  • [76] C. Maraveas, “Production of sustainable and biodegradable polymers from agricultural waste,” Polymers (Basel)., vol. 12, no. 5, 2020, doi: 10.3390/POLYM12051127.
  • [77] Christyanne Faye San Juan, “Sustainable Packaging Solutions for Eco-Conscious Consumers and Businesses,” Paper Mart, 2023.
  • [78] D. Bolcu, M. M. Stănescu, and C. M. Miriţoiu, “Some Mechanical Properties of Composite Materials With Chopped Wheat Straw Reinforcer and Hybrid Matrix,” Polymers. 2022. doi: 10.3390/polym14153175.
  • [79] M. P. Jones et al., “Waste‐derived Low‐cost Mycelium Composite Construction Materials With Improved Fire Safety,” Fire and Materials. 2018. doi: 10.1002/fam.2637.
  • [80] N. S. F. Azman and Z. Romli, “Alternative Pineapple Fibre Advancement in Furniture Design,” Environment-Behaviour Proceedings Journal. 2024. doi: 10.21834/e-bpj.v9isi17.5434.
  • [81] X. Hanyue, M. T. H. Sultan, M. I. Najeeb, and F. S. Shahar, “A Short Review on the Recent Progress and Properties of Pineapple Leaf Fiber Reinforced Composite,” E3s Web of Conferences. 2024. doi: 10.1051/e3sconf/202447700096.
  • [82] J. T. Aladejana, Z. Wu, and M. Fan, “Key Advances in Development of Straw Fibre Bio-Composite Boards: An Overview,” Materials Research Express. 2020. doi: 10.1088/2053-1591/ab66ec.
  • [83] Ş. Yıldızhan, A. Çalık, M. Özcanlı, and H. Serin, “Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications,” European Mechanical Science, 2018.
  • [84] Y. Wang, C. Liu, X. Zhang, and S. Zeng, “Research on Sustainable Furniture Design Based on Waste Textiles Recycling,” Sustainability. 2023. doi: 10.3390/su15043601.
  • [85] G. Singh, M. K. Gupta, S. Chaurasiya, V. S. Sharma, and D. Y. Pimenov, “Rice straw burning: a review on its global prevalence and the sustainable alternatives for its effective mitigation,” Environ. Sci. Pollut. Res., vol. 28, no. 25, pp. 32125–32155, Jul. 2021, doi: 10.1007/s11356-021-14163-3.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri, Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

İzham Kılınç 0000-0002-4145-1225

Mustafa Korkmaz 0000-0001-5595-2154

Erken Görünüm Tarihi 13 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 1 Kasım 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Kılınç, İ., & Korkmaz, M. (2025). Agricultural Waste-Based Composite Materials: Recycling Processes, Technical Properties, and Industrial Applications. European Journal of Technique (EJT), 14(2), 136-145. https://doi.org/10.36222/ejt.1577864

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı