Yıl 2018,
Cilt: 8 Sayı: 1, 5 - 11, 30.06.2018
Alperen Sarı
,
Şahin Sönmez
,
Saffet Ayasun
Kaynakça
- [1] Sangswang, A. and Nwankpa, C. O., “Parameter space depiction of operation for dc-dc boost converter”, in Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), vol. 6, pp. 4874–4878, 2002. [2] Chudjuarjeen, S. vd., “Simulation of a DC-DC boost converter with measurement delays”, in 2011 IEEE Electric Ship Technologies Symposium, pp. 156–160, 2011.
- [3] Nwankpa, C. O. vd., “Modeling and simulation of information-embedded multi-converter power systems”, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 1544–1547, 2013.
- [4] Sangswang, A. and Nwankpa, C. O.. “Parameter space design of DC-DC boost converter based on regions of operation”, in 2004 IEEE Region 10 Conference TENCON 2004, Vol. 4, p. 45–48, 2004.
- [5] Chen J., Gu G. and Nett C.N., “A new method for computing delay margins for stability of linear delay systems”, System and Control Letters, 26(2), pp. 101–117, 1995.
- [6] Walton K.E. and Marshall J.E., “Direct method for TDS stability analysis”, IEEE Proceeding Part D., 134, pp. 101-107, 1987.
- [7] Rekasius Z.V., “A stability test for systems with delays”, in Proceedings of Joint Automatic Control Conference, 1980.
- [8] Olgac N. and Sipahi R., “An exact method for the stability analysis of time-delayed linear time invariant (LTI) systems”, IEEE Transactions on Automatic Control, 47(5), pp. 793-797, 2002.
- [9] Louisell, J. “A matrix method for determining the imaginary axis eigenvalues of a delay system”, IEEE Transactions on Automatic Control, vol 12, pp. 2008–2012, 2001.
- [10] Liu M., Yang L., Gan D., Wang D., Gao F. and Chen Y., “The stability of AGC systems with commensurate delays”, European Transactions on Electrical Power, 17(6), pp. 615-627, 2007.
- [11] Sönmez Ş., Ayasun S. and Nwankpa C.O., “An exact method for computing delay margin for stability of load frequency control systems with constant communication delays”, IEEE Transactions Power Systems, 31(1), pp. 370-377, 2016.
- [12] Sönmez, Ş., Ayasun, S. and Eminoğlu, U., “Computation of time delay margins for stability of a single-area load frequency control system with communication delays”, WSEAS Transactions on Power Systems, 9, pp. 67-76, 2014.
- [13] Sarı, A., Sönmez, Ş., ve Ayasun S., “Zaman Gecikmeli Yükselten DA-DA Dönüştürücülerin Kararlılık Analizi”,Ulusal Elektrik Enerjisi Dönüşümü (EL-EN), pp. 99–104., 2017.
- [14] Vyhlídal T. and Zítek P., “Mapping based algorithm for large-scale computation of quasi-polynomial zeros”, IEEE Transactions on Automatic Control, 54 (1), pp. 171-177, 2009.
- [15] Vyhlídal T., Olgaç N. and Kučera, V., “Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design”, Journal of Sound and Vibration, 333(25), pp. 6781–6795, 2014.
- [16] Simulink, “Model-based and system-based design using Simulink”, MathWorks, Natick, 2000.
- [17] Middlebrook, R. D. and Cuk S., “A general unified approach to modelling switching-converter power stages”, in 1976 IEEE Power Electronics Specialists Conference, pp. 18–34, 1976.
- [18] Krein, P. T. vd., “On the use of averaging for the analysis of power electronic systems”, IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 182–190, Apr. 1990.
- [19] Schrödel, F. Abdelmalek, M. and Abel, D., “A comparative overview and expansion of frequency based stability boundary mapping methods for time delay systems”, IFAC, vol 10, pp. 229–234, 2016.
- [20] Sipahi R. and Olgac, N., “A Comparative Survey in Determining the Imaginary Characteristıi Roots of LTI Time Delayed Systems”, IFAC Proceedings Volumes, 38(1), pp. 390–399, 2005.
- [21] Marshall, J. H., Walton, K., Korytowski, A., and Gorecki, H., “Time-delay systems: Stability and performance criteria with applications”, E. Horwood, New York,.1992.
Ağ Üzerinden Kontrol Edilen Yükselten DA-DA Dönüştürücünün Zaman Gecikmesine Bağlı Kararlılık Analizi
Yıl 2018,
Cilt: 8 Sayı: 1, 5 - 11, 30.06.2018
Alperen Sarı
,
Şahin Sönmez
,
Saffet Ayasun
Öz
Yükselten doğru Akım (DA)-doğru
Akım (DA) dönüştürücülerin ağ üzerinden kapalı çevrim kontrol edilmesi
durumunda, kullanılan haberleşme ağının yapısına ve veri iletimine bağlı olarak
sistemin dinamik performansını olumsuz etkileyecek haberleşme zaman gecikmeleri
gözlemlenmektedir. Sistemin sınırda kararlı olacağı maksimum haberleşme zaman
gecikmesinin hesaplanması, sistemin güvenilir ve kararlı bir biçimde kontrolünün
yapabilmesi için önemlidir. Bu çalışmada, ağ üzerinden kontrol edilen yükselten
DA-DA dönüştürücünün zaman gecikmesine bağlı kararlılık analizi yapılmıştır. Bu
amaçla, ilk olarak yükselten DA-DA dönüştürücünün denge noktası etrafında
geçerli olan doğrusal zaman gecikmeli durum uzay denklem modeli elde
edilmiştir. Daha sonra, oransal-integral (PI) denetleyicinin farklı değerleri
için Kronecker çarpım ve temel dönüşüm metodu uygulanarak sistemin sınırda
kararlı olacağı maksimum zaman gecikmesi değerleri analitik olarak
hesaplanmıştır. Son olarak, bulunan teorik maksimum zaman gecikme değerlerinin
doğruluğu, zaman gecikmeli karakteristik denklemlerin köklerini bulma
algoritması ve zaman düzleminde yapılan benzetim çalışmaları yardımıyla gösterilmiştir.
Kaynakça
- [1] Sangswang, A. and Nwankpa, C. O., “Parameter space depiction of operation for dc-dc boost converter”, in Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), vol. 6, pp. 4874–4878, 2002. [2] Chudjuarjeen, S. vd., “Simulation of a DC-DC boost converter with measurement delays”, in 2011 IEEE Electric Ship Technologies Symposium, pp. 156–160, 2011.
- [3] Nwankpa, C. O. vd., “Modeling and simulation of information-embedded multi-converter power systems”, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 1544–1547, 2013.
- [4] Sangswang, A. and Nwankpa, C. O.. “Parameter space design of DC-DC boost converter based on regions of operation”, in 2004 IEEE Region 10 Conference TENCON 2004, Vol. 4, p. 45–48, 2004.
- [5] Chen J., Gu G. and Nett C.N., “A new method for computing delay margins for stability of linear delay systems”, System and Control Letters, 26(2), pp. 101–117, 1995.
- [6] Walton K.E. and Marshall J.E., “Direct method for TDS stability analysis”, IEEE Proceeding Part D., 134, pp. 101-107, 1987.
- [7] Rekasius Z.V., “A stability test for systems with delays”, in Proceedings of Joint Automatic Control Conference, 1980.
- [8] Olgac N. and Sipahi R., “An exact method for the stability analysis of time-delayed linear time invariant (LTI) systems”, IEEE Transactions on Automatic Control, 47(5), pp. 793-797, 2002.
- [9] Louisell, J. “A matrix method for determining the imaginary axis eigenvalues of a delay system”, IEEE Transactions on Automatic Control, vol 12, pp. 2008–2012, 2001.
- [10] Liu M., Yang L., Gan D., Wang D., Gao F. and Chen Y., “The stability of AGC systems with commensurate delays”, European Transactions on Electrical Power, 17(6), pp. 615-627, 2007.
- [11] Sönmez Ş., Ayasun S. and Nwankpa C.O., “An exact method for computing delay margin for stability of load frequency control systems with constant communication delays”, IEEE Transactions Power Systems, 31(1), pp. 370-377, 2016.
- [12] Sönmez, Ş., Ayasun, S. and Eminoğlu, U., “Computation of time delay margins for stability of a single-area load frequency control system with communication delays”, WSEAS Transactions on Power Systems, 9, pp. 67-76, 2014.
- [13] Sarı, A., Sönmez, Ş., ve Ayasun S., “Zaman Gecikmeli Yükselten DA-DA Dönüştürücülerin Kararlılık Analizi”,Ulusal Elektrik Enerjisi Dönüşümü (EL-EN), pp. 99–104., 2017.
- [14] Vyhlídal T. and Zítek P., “Mapping based algorithm for large-scale computation of quasi-polynomial zeros”, IEEE Transactions on Automatic Control, 54 (1), pp. 171-177, 2009.
- [15] Vyhlídal T., Olgaç N. and Kučera, V., “Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design”, Journal of Sound and Vibration, 333(25), pp. 6781–6795, 2014.
- [16] Simulink, “Model-based and system-based design using Simulink”, MathWorks, Natick, 2000.
- [17] Middlebrook, R. D. and Cuk S., “A general unified approach to modelling switching-converter power stages”, in 1976 IEEE Power Electronics Specialists Conference, pp. 18–34, 1976.
- [18] Krein, P. T. vd., “On the use of averaging for the analysis of power electronic systems”, IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 182–190, Apr. 1990.
- [19] Schrödel, F. Abdelmalek, M. and Abel, D., “A comparative overview and expansion of frequency based stability boundary mapping methods for time delay systems”, IFAC, vol 10, pp. 229–234, 2016.
- [20] Sipahi R. and Olgac, N., “A Comparative Survey in Determining the Imaginary Characteristıi Roots of LTI Time Delayed Systems”, IFAC Proceedings Volumes, 38(1), pp. 390–399, 2005.
- [21] Marshall, J. H., Walton, K., Korytowski, A., and Gorecki, H., “Time-delay systems: Stability and performance criteria with applications”, E. Horwood, New York,.1992.