Yıl 2021,
Cilt: 11 Sayı: 22, 27 - 35, 30.12.2021
Zeynep Pacci
,
Yasemin Atılgan Şengül
,
Rukset Attar
,
Oya Alagöz
,
Asli Uyar
Kaynakça
- [1] R. Bhardwaj, A. R. Nambiar, D. Dutta, “A Study of Machine Learning in Healthcare”, IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, 236-241, July 2017.
- [2] W. Liu, P. Shen, Y. Qu, D. Xia, “Fast algorithm of support vector machines in lung cancer diagnosis”, International Workshop on Medical Imaging and Augmented Reality, Hong Kong, 188-192, 2001.
- [3] S.M., McKinney, M., Sieniek, V. Godbole, et al. “International evaluation of an AI system for breast cancer screening”, Nature, 577, 89–94, 2020.
- [4] F. Jiang et al., “Artificial intelligence in healthcare: Past, present and future”, Stroke Vasc. Neurol., 2(1), 230–243, 2017.
- [5] P.C. Steptoe, R.G. Edwards, “Birth after the reimplantation of a human embryo”, Lancet, 2, 366, 1978.
- [6] M. Vander Borght, C. Wyns, “Fertility and infertility: Definition and epidemiology,” Clinical Biochemistry, 62, 2018.
- [7] R. G. Edwards and P. C. Steptoe, “Induction of follicular growth, ovulation and luteinization in the human ovary.,” J. Reprod. Fertil. Suppl., 1975.
- [8] M. E. Cohen, “The ‘brave new baby’ and the law: fashioning remedies for the victims of in vitro fertilization.,” Am. J. Law Med., 1978.
- [9] M. R. Sadeghi, “The 40th anniversary of IVF: Has ART’s success reached its peak?,” Journal of Reproduction and Infertility, 2018.
- [10] B. Mesko, “The role of artificial intelligence in precision medicine,” Expert Review of Precision Medicine and Drug Development, 2(5), 239-241, 2017.
- [11] A. Uyar, Y. Sengul, A. Bener, “Emerging technologies for improving embryo selection: a systematic review,” Adv. Health Care Technol.,1, 55-64, 2015.
- [12] L. Bori, E. Paya, L. Alegre, et al., “Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential”, Fertility and Sterility, 114(6), 1232 -1241, 2020.
- [13] G. Letterie, A. Mac Donald, “Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization”, Fertility and Sterility, 114(5), 1026-1031, 2020.
- [14] S. J. Kaufmann, J. L. Eastaugh, S. Snowden, S. W. Smye, and V. Sharma, “The application of neural networks in predicting the outcome of in-vitro fertilization,” Hum. Reprod., 12(7), 1454-1457, 1997.
- [15] P. Vogiatzi, A. Pouliakis, C. Siristatidis, “An artificial neural network for the prediction of assisted reproduction outcome”, J Assist Reprod Genet, 36(7), 1441-1448, 2019.
- [16] A. La Marca et al., “Anti-Müllerian hormone-based prediction model for a live birth in assisted reproduction,” Reprod. Biomed. Online, 22(4), 341-349, 2011.
- [17] W. J. Yi, K. S. Park, J. S. Paick, “Morphological classification of sperm heads using artificial neural networks”, Studies in Health Technology and Informatics, 52, 1071-1074, 1998.
- [18] D. A. Morales et al., “Bayesian classification for the selection of in vitro human embryos using morphological and clinical data”, Comput. Methods Programs Biomed., 90(2), 104-116, 2008.
- [19] P. Burai, A. Hajdu, F. R. E. Manuel, B. Harangi, “Segmentation of the uterine wall by an ensemble of fully convolutional neural networks”, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 49-52, 2018.
- [20] A. Uyar, A. Bener, H.N. Ciray, “Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods”, Med Decis Making, 35(6), 714-725, 2015.
- [21] L. Breiman, “Random forests,” Mach. Learn., 45, 5-32, 2001.
- [22] Z. Barnett-Itzhaki et al., “Machine learning vs. classic statistics for the prediction of IVF outcomes”, J Assist Reprod Genet, 37(10), 2405-2412, 2020.
- [23] J. Qui et al. “Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method”, J Transl Med, 17, 317-324, 2019.
Yapay Zeka Tabanlı Klinik Karar Destek Sistemi ile Tüp Bebek Tedavisi Gebelik Sonucu Tahmini
Yıl 2021,
Cilt: 11 Sayı: 22, 27 - 35, 30.12.2021
Zeynep Pacci
,
Yasemin Atılgan Şengül
,
Rukset Attar
,
Oya Alagöz
,
Asli Uyar
Öz
Tüp bebek tedavisi başarı olasılığının henüz tedavi başlamadan belirlenmesi hastalar ve klinisyenler açısından önem taşımaktadır. Yapay zeka tabanlı klinik karar destek sistemleri, geçmiş tedavi verilerini analiz ederek yeni tedavilerde gebelik sonucunun tahmin edilmesine olanak sağlar. Bu çalışmada, tüp bebek tedavisine başlayacak hastaya ait öznitelikler kullanılarak pozitif gebelik olasılığını hesaplayan bir model geliştirilmiştir. Çalışmada kullanılan veri kümesi Yeditepe Üniversitesi Hastanesi Tüp Bebek Kliniği’nde 2013-2019 yılları arasında gerçekleştirilen 1154 adet tedavi siklusuna ait elektronik sağlık kayıtlarından oluşmaktadır. Veri kümesi üzerinde beş farklı sınıflandırma yöntemi (Destek Vektör Makineleri, Çok Katmanlı Algılayıcı, Rastgele Orman, Aşırı Gradyan Artırma ve Hafif Gradyan Artırma) 5-katlı çapraz doğrulama yöntemi kullanılarak karşılaştırmalı olarak incelenmiştir. Gebelik sonucu tahmininde en yüksek sınıflandırma performansı Destek Vektör Makineleri yöntemi ile elde edilmiş (AUC=0.70) ve sınıflandırma olasılık sonuçlarında karar eşik değerinin optimizasyonu ile tahmin doğruluğu daha da iyileştirilerek gebelik sonucunun %71.7 Doğru Pozitif ve %59.4 Doğru Negatif oranı ile tahmin edilmesi sağlanmıştır.
Kaynakça
- [1] R. Bhardwaj, A. R. Nambiar, D. Dutta, “A Study of Machine Learning in Healthcare”, IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, 236-241, July 2017.
- [2] W. Liu, P. Shen, Y. Qu, D. Xia, “Fast algorithm of support vector machines in lung cancer diagnosis”, International Workshop on Medical Imaging and Augmented Reality, Hong Kong, 188-192, 2001.
- [3] S.M., McKinney, M., Sieniek, V. Godbole, et al. “International evaluation of an AI system for breast cancer screening”, Nature, 577, 89–94, 2020.
- [4] F. Jiang et al., “Artificial intelligence in healthcare: Past, present and future”, Stroke Vasc. Neurol., 2(1), 230–243, 2017.
- [5] P.C. Steptoe, R.G. Edwards, “Birth after the reimplantation of a human embryo”, Lancet, 2, 366, 1978.
- [6] M. Vander Borght, C. Wyns, “Fertility and infertility: Definition and epidemiology,” Clinical Biochemistry, 62, 2018.
- [7] R. G. Edwards and P. C. Steptoe, “Induction of follicular growth, ovulation and luteinization in the human ovary.,” J. Reprod. Fertil. Suppl., 1975.
- [8] M. E. Cohen, “The ‘brave new baby’ and the law: fashioning remedies for the victims of in vitro fertilization.,” Am. J. Law Med., 1978.
- [9] M. R. Sadeghi, “The 40th anniversary of IVF: Has ART’s success reached its peak?,” Journal of Reproduction and Infertility, 2018.
- [10] B. Mesko, “The role of artificial intelligence in precision medicine,” Expert Review of Precision Medicine and Drug Development, 2(5), 239-241, 2017.
- [11] A. Uyar, Y. Sengul, A. Bener, “Emerging technologies for improving embryo selection: a systematic review,” Adv. Health Care Technol.,1, 55-64, 2015.
- [12] L. Bori, E. Paya, L. Alegre, et al., “Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential”, Fertility and Sterility, 114(6), 1232 -1241, 2020.
- [13] G. Letterie, A. Mac Donald, “Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization”, Fertility and Sterility, 114(5), 1026-1031, 2020.
- [14] S. J. Kaufmann, J. L. Eastaugh, S. Snowden, S. W. Smye, and V. Sharma, “The application of neural networks in predicting the outcome of in-vitro fertilization,” Hum. Reprod., 12(7), 1454-1457, 1997.
- [15] P. Vogiatzi, A. Pouliakis, C. Siristatidis, “An artificial neural network for the prediction of assisted reproduction outcome”, J Assist Reprod Genet, 36(7), 1441-1448, 2019.
- [16] A. La Marca et al., “Anti-Müllerian hormone-based prediction model for a live birth in assisted reproduction,” Reprod. Biomed. Online, 22(4), 341-349, 2011.
- [17] W. J. Yi, K. S. Park, J. S. Paick, “Morphological classification of sperm heads using artificial neural networks”, Studies in Health Technology and Informatics, 52, 1071-1074, 1998.
- [18] D. A. Morales et al., “Bayesian classification for the selection of in vitro human embryos using morphological and clinical data”, Comput. Methods Programs Biomed., 90(2), 104-116, 2008.
- [19] P. Burai, A. Hajdu, F. R. E. Manuel, B. Harangi, “Segmentation of the uterine wall by an ensemble of fully convolutional neural networks”, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 49-52, 2018.
- [20] A. Uyar, A. Bener, H.N. Ciray, “Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods”, Med Decis Making, 35(6), 714-725, 2015.
- [21] L. Breiman, “Random forests,” Mach. Learn., 45, 5-32, 2001.
- [22] Z. Barnett-Itzhaki et al., “Machine learning vs. classic statistics for the prediction of IVF outcomes”, J Assist Reprod Genet, 37(10), 2405-2412, 2020.
- [23] J. Qui et al. “Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method”, J Transl Med, 17, 317-324, 2019.