Araştırma Makalesi
BibTex RIS Kaynak Göster

INTEGER PROGRAMMING MODEL FOR SYNCHRONIZATION MAXIMIZATION BETWEEN BUS AND TRAIN LINE

Yıl 2024, Cilt: 35 Sayı: 2, 245 - 268, 01.09.2024
https://doi.org/10.46465/endustrimuhendisligi.1420465

Öz

In public transportation systems, the desired location is usually reached by making more than one transfer. The lack of synchronization of the two vehicles for the transfer causes increases the waiting time of the passengers at the transfer station and thus negatively affects the use of public transportation. On the other hand, a large number of transfers at transfer stations causes high transportation costs and accumulation at the corresponding stations. In this study, an integer programming model is developed that aims to maximize the number of synchronizations between bus and train lines focusing on the synchronization between different means of transportation. The model takes into account the waiting time as well as the transfer walking time, which is one of the parameters affecting the number of synchronizations. The performance of the model is tested on a small network and the results are analyzed.

Kaynakça

  • Aksu, D. ve Yılmaz, S. (2014). Transit coordination with heterogeneous headways. Transportation Planning and Technology, 37(5), 450-465. Doi: https://doi.org./10.1080/03081060.2014.912419
  • Cao, N., Tang, T. ve Gao, C. (2020). Multiperiod transfer synchronization for cross-platform transfer in an urban rail transit system. Symmetry, 12(10), 46-67. 1665. Doi: https://doi.org./10.3390/sym12101665
  • Ceder, A, Golany, B. ve Tal, O. (2001). Creating bus timetables with maximal synchronization. Transportation Research Part A: Policy and Practice, 35(10), 913-928. Doi: https://doi.org./10.1016/S0965-8564(00)00032-X
  • Ceder, A. ve Tal, O. (2001). Designing Synchronization into Bus Timetables. Transportation Research Record: Journal of the Transportation Research Board, 1760(1), 28-33. Doi: https://doi.org./10.3141/1760-04
  • Chai, H., Tian, X., ve Niu, H. (2022). First‐train timetable synchronization in metro networks under origin‐destination demand conditions. Journal of Advanced Transportation, 2022(1), 8579354. Doi: https://doi.org/10.1155/ 2022/8579354
  • Chen, Y. Z., Shi, C. L., Claudel, C. G. ve Hu, M. B. (2023). First train timetable synchronization with interval trains in subway networks. Transportmetrica B: Transport Dynamics, 11(1), 69-92. Doi: https://doi.org/10.1080/ 21680566.2022.2038304
  • Chen, Y. ve An, K. (2021). Integrated optimization of bus bridging routes and timetables for rail disruptions. European Journal of Operational Research, 295(2), 484-498. Doi: https://doi.org/10.1016/j.ejor.2021.03.014
  • Chen, Y., Mao, B., Bai, Y., Ho, T. K. ve Li, Z. (2019a). Optimal coordination of last trains for maximum transfer accessibility with heterogeneous walking time. Journal of Advanced Transportation, 2019, 1-13. Doi:https://doi.org./ 10.1155/2019/9692024
  • Chen, Y., Mao, B., Bai, Y., Ho, T. K. ve Li, Z. (2019b). Timetable synchronization of last trains for urban rail networks with maximum accessibility. Transportation Research Part C: Emerging Technologies, 99, 110-129. Doi: https://doi.org./10.1016/j.trc.2019.01.003
  • Dou, X., Meng, Q. ve Guo, X. (2015). Bus schedule coordination for the last train service in an intermodal bus-and-train transport network. Transportation Research Part C: Emerging Technologies, 60, 360-376. Doi: https://doi.org./10.1016/j.trc.2015.09.006
  • Eranki, A. (2004). A model to create bus timetables to attain maximum synchronization considering waiting times at transfer stops. (Yüksek lisans Tezi). Department of Industrial and Management Systems Engineering University of South Florida.
  • Farahani, R. Z., Miandoabchi, E., Szeto, W. Y. ve Rashidi, H. (2013). A review of urban transportation network design problems. European Journal of Operational Research, 229(2), 281-302. Doi: https://doi.org./10.1016/ j.ejor.2013.01.001
  • Geng, J., Zhang, C., Yang, L., Meng, F. ve Qi, J. (2024). Integrated scheduling of metro trains and shuttle buses with passenger flow control strategy on an oversaturated metro line. Computers & Industrial Engineering, 189, 109980. Doi: https://doi.org/10.1016/j.cie.2024.109980
  • Guo, X., Sun, H., Wu, J., Jin, J., Zhou, J. ve Gao, Z. (2017). Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B: Methodological, 96, 46-67. Doi: https://doi.org./10.1016/ j.trb.2016.11.005
  • Guo, X., Wu, J., Sun, H., Liu, R. ve Gao, Z. (2016). Timetable coordination of first trains in urban railway network: A case study of Beijing. Applied Mathematical Modelling, 40(17-18), 8048-8066. Doi: https://doi.org./10.1016/j.apm.2016.04.004
  • Guo, X., Wu, J., Sun, H., Yang, X., Jin, J. G. ve Wang, D. Z. W. (2020). Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation. Transportation Research Part A: Policy and Practice, 138, 463-490. Doi: https://doi.org./10.1016/j.tra.2020.06.008
  • Guo, X., Wu, J., Zhou, J., Yang, X., Wu, D. ve Gao, Z. (2019). First-train timing synchronisation using multi-objective optimisation in urban transit networks. International Journal of Production Research, 57(11), 3522-3537. Doi: https://doi.org./10.1080/00207543.2018.1542177
  • Huang, K., Wu, J., Liao, F., Sun, H., He, F. ve Gao, Z. (2021). Incorporating multimodal coordination into timetabling optimization of the last trains in an urban railway network. Transportation Research Part C: Emerging Technologies, 124, 102889. Doi: https://doi.org./10.1016/j.trc.2020.102889
  • Ibarra-Rojas, O. J., López-Irarragorri, F. ve Rios-Solis, Y. A. (2016). Multiperiod bus timetabling. Transportation Science, 50(3), 805-822. Doi: https://doi.org./10.1287/trsc.2014.0578
  • Ibarra-Rojas, O. J. ve Rios-Solis, Y. A. (2012). Synchronization of bus timetabling. Transportation Research Part B: Methodological, 46(5), 599-614. Doi: https://doi.org./10.1016/j.trb.2012.01.006
  • Kang, L., Li, H., Sun, H., Wu, J., Cao, Z. ve Buhigiro, N. (2021). First train timetabling and bus service bridging in intermodal bus-and-train transit networks. Transportation Research Part B: Methodological, 149, 443-462. https://doi.org./10.1016/j.trb.2021.05.011
  • Kang, L. ve Meng, Q. (2017). Two-phase decomposition method for the last train departure time choice in subway networks. Transportation Research Part B: Methodological, 104, 568-582. Doi: https://doi.org./10.1016/j.trb.2017.05.001
  • Kang, L., Wu, J., Sun, H., Zhu, X. ve Gao, Z. (2015). A case study on the coordination of last trains for the Beijing subway network. Transportation Research Part B: Methodological, 72,112-127.Doi: https://doi.org./10.1016/j.trb.2014.09.003
  • Kang, L., Wu, J., Sun, H., Zhu, X. ve Wang, B. (2015). A practical model for last train rescheduling with train delay in urban railway transit networks. Omega, 50, 29-42. Doi: https://doi.org./10.1016/j.omega.2014.07.005
  • Kang, L. ve Zhu, X. (2016). A simulated annealing algorithm for first train transfer problem in urban railway networks. Applied Mathematical Modelling, 40(1), 419-435. Doi: https://doi.org./10.1016/j.apm.2015.05.008
  • Kang, L. ve Zhu, X. (2017). Strategic timetable scheduling for last trains in urban railway transit networks. Applied Mathematical Modelling, 45, 209-225. Doi: https://doi.org./10.1016/j.apm.2016.12.016
  • Kang, L., Zhu, X., Sun, H., Puchinger, J., Ruthmair, M. ve Hu, B. (2016). Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks. Transportation Research Part B: Methodological, 93, 17-36. Doi: https://doi.org./10.1016/j.trb.2016.07.006
  • Kang, L., Zhu, X., Sun, H., Wu, J., Gao, Z. ve Hu, B. (2019). Last train timetabling optimization and bus bridging service management in urban railway transit networks. Omega, 84, 31-44. Doi: https://doi.org./10.1016/j.omega.2018.04.003
  • Ke, Y., Nie, L., Liebchen, C., Yuan, W. ve Wu, X. (2020). Improving synchronization in an air and high-speed rail ıntegration service via adjusting a rail timetable: A real-world case study in china. Journal of Advanced Transportation, 2020, 1-13. Doi: https://doi.org./10.1155/2020/5081315
  • Li, X., Yamamoto, T., Yan, T., Lu, L. ve Ye, X. (2020). First train timetabling for urban rail transit networks with maximum passenger transfer satisfaction. Sustainability, 12(10), 4166. Doi: https://doi.org./10.3390/su12104166
  • Li, X., Lu, Y. ve Yang, L. (2024). Collaborative optimization of passenger flow control and bus-bridging services in commuting metro lines. Applied Mathematical Modelling,130, 806-826. Doi: https://doi.org/10.1016/j.apm.2024.03.022
  • Li, H., Kang, L., Sun, H., Wu, J. ve Amihere, S. (2024). First train timetabling and passenger transfer routing problems in urban rail transit networks. Applied Mathematical Modelling, 131, 344-362. Doi: https://doi.org/10.1016/ j.apm.2024.04.005
  • Liu, Y., Zhang, Q., Li, X. ve Shi, Y. (basım aşamasında). Optimizing multimodal timetable synchronization of intercity railway and metro for the first service period during holidays. International Journal of Transportation Science and Technology. Doi: https://doi.org/10.1016/j.ijtst.2024.04.005
  • Long, S., Meng, L., Miao, J., Hong, X. ve Corman, F. (2020). Synchronizing last trains of urban rail transit system to better serve passengers from late night trains of high-speed railway lines. Networks and Spatial Economics, 20(2), 599-633. Doi: https://doi.org./10.1007/s11067-019-09487-0
  • Lu, K., Han, B. ve Zhou, X. (2018). Smart urban transit systems: from ıntegrated framework to ınterdisciplinary perspective. Urban Rail Transit, 4(2), 49-67. Doi: https://doi.org./10.1007/s40864-018-0080-x
  • Ning, J., Peng, Q., Zhu, Y., Jiang, Y. ve Nielsen, O. A. (2022). A Bi-objective optimization model for the last train timetabling problem. Journal of Rail Transport Planning & Management, 23, 100333. Doi: https://doi.org/10.1016/j.jrtpm.2022.100333
  • Ning, J., Peng, Q., Zhu, Y., Xing, X. ve Nielsen, O. A. (2023). Bi-objective optimization of last-train timetabling with multimodal coordination in urban transportation. Transportation Research Part C: Emerging Technologies, 154, 104260. Doi: https://doi.org/10.1016/j.trc.2023.104260
  • Shafahi, Y. ve Khani, A. (2010). A practical model for transfer optimization in a transit network: Model formulations and solutions. Transportation Research Part A: Policy and Practice, 44(6), 377-389. Doi:https://doi.org./10.1016/ j.tra.2010.03.007
  • Shrivastava, P. ve Dhingra, S. L. (2002). Development of coordinated schedules using genetic algorithms. Journal of Transportation Engineering, 128(1), 89-96. Doi: https://doi.org./10.1061/(ASCE)0733-947X(2002)128:1(89)
  • Wu, Y. ve Tang, J. (2012). Optimizing timetable synchronization for regional public transit with minimum transfer waiting times. 2012 24th Chinese Control and Decision Conference (CCDC) içinde 3782-3786). Doi :https://doi.org./10.1109/CCDC.2012.6244608
  • Wu, J., Liu, M., Sun, H., Li, T., Gao, Z. ve Wang, D. Z. W. (2015). Equity-based timetable synchronization optimization in urban subway network. Transportation Research Part C: Emerging Technologies, 51, 1-18. Doi: https://doi.org./10.1016/j.trc.2014.11.001
  • Yao, Y., Zhu, X., Shi, H. ve Shang, P. (2019). Last train timetable optimization considering detour routing strategy in an urban rail transit network. Measurement and Control, 52(9-10), 1461-1479. Doi:https://doi.org./10.1177/0020294019877480
  • Yüksel, T. ve Öztürk, Z. (2024). Timetable synchronisation for the first trains in the day according to actual transfer times. Promet-Traffic&Transportation, 36(1), 69-82. Doi: https://doi.org/10.7307/ ptt.v36i1.402
  • Zhou, Y., Wang, Y., Yang, H. ve Yan, X. (2019). Last train scheduling for maximizing passenger destination reachability in urban rail transit networks. Transportation Research Part B: Methodological, 129, 79-95. Doi: https://doi.org./10.1016/j.trb.2019.09.006

OTOBÜS VE TREN HATTI ARASINDAKİ SENKRONİZASYON MAKSİMİZASYONU İÇİN TAMSAYILI PROGRAMLAMA MODELİ

Yıl 2024, Cilt: 35 Sayı: 2, 245 - 268, 01.09.2024
https://doi.org/10.46465/endustrimuhendisligi.1420465

Öz

Toplu taşıma sistemlerinde genellikle birden fazla transfer gerçekleştirilerek istenilen konuma ulaşılmaktadır. Transfer gerçekleştirecek iki aracın senkronize olmaması, yolcuların transfer istasyonunda bekleme süresinin artmasına neden olmakta, bu durum toplu taşıma kullanımını olumsuz yönde etkilemektedir. Bununla birlikte transfer istasyonlarında fazla sayıda transferin gerçekleşmesi, ulaşım maliyetlerinin artmasına ve söz konusu istasyonlarda yığılmalara neden olmaktadır. Bu çalışmada, farklı ulaşım araçları arasındaki senkronizasyona odaklanılarak, otobüs ve tren hattı arasındaki senkronizasyon sayısını maksimize etmeyi amaçlayan tamsayılı programlama modeli geliştirilmiştir. Model, senkronizasyon sayısını etkileyen parametrelerden olan transfer yürüyüş süresinin yanısıra bekleme süresini de dikkate almaktadır. Modelin performansı, küçük bir ağda denenmiş ve sonuçları analiz edilmiştir.

Kaynakça

  • Aksu, D. ve Yılmaz, S. (2014). Transit coordination with heterogeneous headways. Transportation Planning and Technology, 37(5), 450-465. Doi: https://doi.org./10.1080/03081060.2014.912419
  • Cao, N., Tang, T. ve Gao, C. (2020). Multiperiod transfer synchronization for cross-platform transfer in an urban rail transit system. Symmetry, 12(10), 46-67. 1665. Doi: https://doi.org./10.3390/sym12101665
  • Ceder, A, Golany, B. ve Tal, O. (2001). Creating bus timetables with maximal synchronization. Transportation Research Part A: Policy and Practice, 35(10), 913-928. Doi: https://doi.org./10.1016/S0965-8564(00)00032-X
  • Ceder, A. ve Tal, O. (2001). Designing Synchronization into Bus Timetables. Transportation Research Record: Journal of the Transportation Research Board, 1760(1), 28-33. Doi: https://doi.org./10.3141/1760-04
  • Chai, H., Tian, X., ve Niu, H. (2022). First‐train timetable synchronization in metro networks under origin‐destination demand conditions. Journal of Advanced Transportation, 2022(1), 8579354. Doi: https://doi.org/10.1155/ 2022/8579354
  • Chen, Y. Z., Shi, C. L., Claudel, C. G. ve Hu, M. B. (2023). First train timetable synchronization with interval trains in subway networks. Transportmetrica B: Transport Dynamics, 11(1), 69-92. Doi: https://doi.org/10.1080/ 21680566.2022.2038304
  • Chen, Y. ve An, K. (2021). Integrated optimization of bus bridging routes and timetables for rail disruptions. European Journal of Operational Research, 295(2), 484-498. Doi: https://doi.org/10.1016/j.ejor.2021.03.014
  • Chen, Y., Mao, B., Bai, Y., Ho, T. K. ve Li, Z. (2019a). Optimal coordination of last trains for maximum transfer accessibility with heterogeneous walking time. Journal of Advanced Transportation, 2019, 1-13. Doi:https://doi.org./ 10.1155/2019/9692024
  • Chen, Y., Mao, B., Bai, Y., Ho, T. K. ve Li, Z. (2019b). Timetable synchronization of last trains for urban rail networks with maximum accessibility. Transportation Research Part C: Emerging Technologies, 99, 110-129. Doi: https://doi.org./10.1016/j.trc.2019.01.003
  • Dou, X., Meng, Q. ve Guo, X. (2015). Bus schedule coordination for the last train service in an intermodal bus-and-train transport network. Transportation Research Part C: Emerging Technologies, 60, 360-376. Doi: https://doi.org./10.1016/j.trc.2015.09.006
  • Eranki, A. (2004). A model to create bus timetables to attain maximum synchronization considering waiting times at transfer stops. (Yüksek lisans Tezi). Department of Industrial and Management Systems Engineering University of South Florida.
  • Farahani, R. Z., Miandoabchi, E., Szeto, W. Y. ve Rashidi, H. (2013). A review of urban transportation network design problems. European Journal of Operational Research, 229(2), 281-302. Doi: https://doi.org./10.1016/ j.ejor.2013.01.001
  • Geng, J., Zhang, C., Yang, L., Meng, F. ve Qi, J. (2024). Integrated scheduling of metro trains and shuttle buses with passenger flow control strategy on an oversaturated metro line. Computers & Industrial Engineering, 189, 109980. Doi: https://doi.org/10.1016/j.cie.2024.109980
  • Guo, X., Sun, H., Wu, J., Jin, J., Zhou, J. ve Gao, Z. (2017). Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B: Methodological, 96, 46-67. Doi: https://doi.org./10.1016/ j.trb.2016.11.005
  • Guo, X., Wu, J., Sun, H., Liu, R. ve Gao, Z. (2016). Timetable coordination of first trains in urban railway network: A case study of Beijing. Applied Mathematical Modelling, 40(17-18), 8048-8066. Doi: https://doi.org./10.1016/j.apm.2016.04.004
  • Guo, X., Wu, J., Sun, H., Yang, X., Jin, J. G. ve Wang, D. Z. W. (2020). Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation. Transportation Research Part A: Policy and Practice, 138, 463-490. Doi: https://doi.org./10.1016/j.tra.2020.06.008
  • Guo, X., Wu, J., Zhou, J., Yang, X., Wu, D. ve Gao, Z. (2019). First-train timing synchronisation using multi-objective optimisation in urban transit networks. International Journal of Production Research, 57(11), 3522-3537. Doi: https://doi.org./10.1080/00207543.2018.1542177
  • Huang, K., Wu, J., Liao, F., Sun, H., He, F. ve Gao, Z. (2021). Incorporating multimodal coordination into timetabling optimization of the last trains in an urban railway network. Transportation Research Part C: Emerging Technologies, 124, 102889. Doi: https://doi.org./10.1016/j.trc.2020.102889
  • Ibarra-Rojas, O. J., López-Irarragorri, F. ve Rios-Solis, Y. A. (2016). Multiperiod bus timetabling. Transportation Science, 50(3), 805-822. Doi: https://doi.org./10.1287/trsc.2014.0578
  • Ibarra-Rojas, O. J. ve Rios-Solis, Y. A. (2012). Synchronization of bus timetabling. Transportation Research Part B: Methodological, 46(5), 599-614. Doi: https://doi.org./10.1016/j.trb.2012.01.006
  • Kang, L., Li, H., Sun, H., Wu, J., Cao, Z. ve Buhigiro, N. (2021). First train timetabling and bus service bridging in intermodal bus-and-train transit networks. Transportation Research Part B: Methodological, 149, 443-462. https://doi.org./10.1016/j.trb.2021.05.011
  • Kang, L. ve Meng, Q. (2017). Two-phase decomposition method for the last train departure time choice in subway networks. Transportation Research Part B: Methodological, 104, 568-582. Doi: https://doi.org./10.1016/j.trb.2017.05.001
  • Kang, L., Wu, J., Sun, H., Zhu, X. ve Gao, Z. (2015). A case study on the coordination of last trains for the Beijing subway network. Transportation Research Part B: Methodological, 72,112-127.Doi: https://doi.org./10.1016/j.trb.2014.09.003
  • Kang, L., Wu, J., Sun, H., Zhu, X. ve Wang, B. (2015). A practical model for last train rescheduling with train delay in urban railway transit networks. Omega, 50, 29-42. Doi: https://doi.org./10.1016/j.omega.2014.07.005
  • Kang, L. ve Zhu, X. (2016). A simulated annealing algorithm for first train transfer problem in urban railway networks. Applied Mathematical Modelling, 40(1), 419-435. Doi: https://doi.org./10.1016/j.apm.2015.05.008
  • Kang, L. ve Zhu, X. (2017). Strategic timetable scheduling for last trains in urban railway transit networks. Applied Mathematical Modelling, 45, 209-225. Doi: https://doi.org./10.1016/j.apm.2016.12.016
  • Kang, L., Zhu, X., Sun, H., Puchinger, J., Ruthmair, M. ve Hu, B. (2016). Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks. Transportation Research Part B: Methodological, 93, 17-36. Doi: https://doi.org./10.1016/j.trb.2016.07.006
  • Kang, L., Zhu, X., Sun, H., Wu, J., Gao, Z. ve Hu, B. (2019). Last train timetabling optimization and bus bridging service management in urban railway transit networks. Omega, 84, 31-44. Doi: https://doi.org./10.1016/j.omega.2018.04.003
  • Ke, Y., Nie, L., Liebchen, C., Yuan, W. ve Wu, X. (2020). Improving synchronization in an air and high-speed rail ıntegration service via adjusting a rail timetable: A real-world case study in china. Journal of Advanced Transportation, 2020, 1-13. Doi: https://doi.org./10.1155/2020/5081315
  • Li, X., Yamamoto, T., Yan, T., Lu, L. ve Ye, X. (2020). First train timetabling for urban rail transit networks with maximum passenger transfer satisfaction. Sustainability, 12(10), 4166. Doi: https://doi.org./10.3390/su12104166
  • Li, X., Lu, Y. ve Yang, L. (2024). Collaborative optimization of passenger flow control and bus-bridging services in commuting metro lines. Applied Mathematical Modelling,130, 806-826. Doi: https://doi.org/10.1016/j.apm.2024.03.022
  • Li, H., Kang, L., Sun, H., Wu, J. ve Amihere, S. (2024). First train timetabling and passenger transfer routing problems in urban rail transit networks. Applied Mathematical Modelling, 131, 344-362. Doi: https://doi.org/10.1016/ j.apm.2024.04.005
  • Liu, Y., Zhang, Q., Li, X. ve Shi, Y. (basım aşamasında). Optimizing multimodal timetable synchronization of intercity railway and metro for the first service period during holidays. International Journal of Transportation Science and Technology. Doi: https://doi.org/10.1016/j.ijtst.2024.04.005
  • Long, S., Meng, L., Miao, J., Hong, X. ve Corman, F. (2020). Synchronizing last trains of urban rail transit system to better serve passengers from late night trains of high-speed railway lines. Networks and Spatial Economics, 20(2), 599-633. Doi: https://doi.org./10.1007/s11067-019-09487-0
  • Lu, K., Han, B. ve Zhou, X. (2018). Smart urban transit systems: from ıntegrated framework to ınterdisciplinary perspective. Urban Rail Transit, 4(2), 49-67. Doi: https://doi.org./10.1007/s40864-018-0080-x
  • Ning, J., Peng, Q., Zhu, Y., Jiang, Y. ve Nielsen, O. A. (2022). A Bi-objective optimization model for the last train timetabling problem. Journal of Rail Transport Planning & Management, 23, 100333. Doi: https://doi.org/10.1016/j.jrtpm.2022.100333
  • Ning, J., Peng, Q., Zhu, Y., Xing, X. ve Nielsen, O. A. (2023). Bi-objective optimization of last-train timetabling with multimodal coordination in urban transportation. Transportation Research Part C: Emerging Technologies, 154, 104260. Doi: https://doi.org/10.1016/j.trc.2023.104260
  • Shafahi, Y. ve Khani, A. (2010). A practical model for transfer optimization in a transit network: Model formulations and solutions. Transportation Research Part A: Policy and Practice, 44(6), 377-389. Doi:https://doi.org./10.1016/ j.tra.2010.03.007
  • Shrivastava, P. ve Dhingra, S. L. (2002). Development of coordinated schedules using genetic algorithms. Journal of Transportation Engineering, 128(1), 89-96. Doi: https://doi.org./10.1061/(ASCE)0733-947X(2002)128:1(89)
  • Wu, Y. ve Tang, J. (2012). Optimizing timetable synchronization for regional public transit with minimum transfer waiting times. 2012 24th Chinese Control and Decision Conference (CCDC) içinde 3782-3786). Doi :https://doi.org./10.1109/CCDC.2012.6244608
  • Wu, J., Liu, M., Sun, H., Li, T., Gao, Z. ve Wang, D. Z. W. (2015). Equity-based timetable synchronization optimization in urban subway network. Transportation Research Part C: Emerging Technologies, 51, 1-18. Doi: https://doi.org./10.1016/j.trc.2014.11.001
  • Yao, Y., Zhu, X., Shi, H. ve Shang, P. (2019). Last train timetable optimization considering detour routing strategy in an urban rail transit network. Measurement and Control, 52(9-10), 1461-1479. Doi:https://doi.org./10.1177/0020294019877480
  • Yüksel, T. ve Öztürk, Z. (2024). Timetable synchronisation for the first trains in the day according to actual transfer times. Promet-Traffic&Transportation, 36(1), 69-82. Doi: https://doi.org/10.7307/ ptt.v36i1.402
  • Zhou, Y., Wang, Y., Yang, H. ve Yan, X. (2019). Last train scheduling for maximizing passenger destination reachability in urban rail transit networks. Transportation Research Part B: Methodological, 129, 79-95. Doi: https://doi.org./10.1016/j.trb.2019.09.006
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Elif Kaymaz 0000-0001-9111-6209

Fatih Çavdur 0000-0001-8054-5606

Erken Görünüm Tarihi 24 Ağustos 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 15 Ocak 2024
Kabul Tarihi 10 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 35 Sayı: 2

Kaynak Göster

APA Kaymaz, E., & Çavdur, F. (2024). OTOBÜS VE TREN HATTI ARASINDAKİ SENKRONİZASYON MAKSİMİZASYONU İÇİN TAMSAYILI PROGRAMLAMA MODELİ. Endüstri Mühendisliği, 35(2), 245-268. https://doi.org/10.46465/endustrimuhendisligi.1420465

19736      14617      26287       15235           15236           15240      15242