Araştırma Makalesi
BibTex RIS Kaynak Göster

SELECTION OF TECHNOLOGY ALTERNATIVES TO OVERCOME REVERSE LOGISTICS BARRIERS AND RANKING THEM ACCORDING TO THEIR IMPORTANCE: APPLICATION OF FUZZY PSI AND COCOSO METHODS

Yıl 2025, Cilt: 36 Sayı: 2, 175 - 206, 31.08.2025

Öz

This study evaluates the selection process of technology alternatives aimed at overcoming barriers in reverse logistics processes. The literature underscores the critical role of reverse logistics applications in sustainable supply chain management, yet operational, economic, and regulatory challenges complicate their implementation. In this context, the study identifies reverse logistics barriers through a comprehensive literature review and analyzes potential technological solutions using fuzzy multi-criteria decision-making (MCDM) methods. The study employs the fuzzy Preference Selection Index (PSI) method for weighting the criteria and the fuzzy Combined Compromise Solution (CoCoSo) method for ranking technology alternatives. Conducting analyses within the framework of fuzzy logic enables a more realistic evaluation of alternatives in decision-making processes involving uncertainty. The findings indicate that Industry 4.0 technologies provide the most effective solution for reverse logistics processes. Automation systems, artificial intelligence-assisted logistics management, and smart storage solutions enhance the efficiency of reverse logistics operations, fostering a more sustainable framework. The study demonstrates that technological solutions in reverse logistics not only improve operational efficiency but also reduce costs, optimize waste management, and contribute to sustainable supply chain management. By offering a comprehensive analysis for decision-makers, this research makes a significant contribution to the literature by illustrating the application of fuzzy MCDM methods in reverse logistics.

Kaynakça

  • Abdulrahman, M. D., Gunasekaran, A. ve Subramanian, N. (2014). Critical barriers in implementing reverse logistics in the Chinese manufacturing sectors. International Journal of Production Economics, 147, 460-471. Doi: https://doi.org/10.1016/j.ijpe.2012.08.003
  • Aitken, J. ve Harrison, A. (2013). Supply governance structures for reverse logistics systems. International Journal of Operations & Production Management, 33(6), 745-764. Doi: https://doi.org/10.1108/IJOPM-10-2011-0362
  • Agrawal, S., Singh, R. K. ve Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation And Recycling, 97, 76-92. Doi: https://doi.org/10.1016/j.resconrec.2015.02.009
  • Ali, O. A. M., Ali, A. Y. ve Sumait, B. S. (2015). Comparison between the effects of different types of membership functions on fuzzy logic controller performance. International Journal, 76, 76-83. Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ijeert.ijrsset.org/pdf/v3-i3/10.pdf
  • Ali, S. M., Arafin, A., Moktadir, M. A., Rahman, T. Ve Zahan, N. (2018). Barriers to reverse logistics in the computer supply chain using interpretive structural model. Global Journal of Flexible Systems Management, 19, 53-68. Doi: https://doi.org/10.1007/s40171-017-0176-2
  • AlKhidir, T., ve Zailani, S. (2009). Going green in supply chain towards environmental sustainability. Global Journal of Environmental Research, 3(3), 246-251. Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclef indmkaj/https://www.researchgate.net/profile/Suhaiza-Zailani/publicatio n/237691968_Going_Green_in_Supply_Chain_Towards_Environmental_Sustainability/links/0f31752dc7e493ec4d000000/Going-Green-in-Supply-Cha in-Towards-Environmental-Sustainability.pdf
  • Amini, M. M., Retzlaff-Roberts, D. ve Bienstock, C. C. (2005). Designing a reverse logistics operation for short cycle time repair services. International Journal Of Production Economics, 96(3), 367-380. Doi: https://doi.org/10.1016/j.ijpe .2004.05.010
  • Batwara, A., Sharma, V., Makkar, M. ve Giallanza, A. (2024). Impact of smart sustainable value stream mapping–Fuzzy PSI decision-making framework. Sustainable Futures, 7, 100201. Doi: https://doi.org/10.1016/j.sftr.2024 .100201
  • Bellman, R. E. ve Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141. Erişim adresi: https://www.jstor.org/ stable/2629367
  • Blackburn, J. D., Guide Jr, V. D. R., Souza, G. C. ve Van Wassenhove, L. N. (2004). Reverse supply chains for commercial returns. California Management Review, 46(2), 6-22. Doi: https://doi.org/10.2307/41166207
  • Bouzon, M., Govindan, K. ve Rodriguez, C. M. T. (2015). Reducing the extraction of minerals: Reverse logistics in the machinery manufacturing industry sector in Brazil using ISM approach. Resources Policy, 46, 27-36. Doi: https://doi.org/10.1016/j.resourpol.2015.02.001
  • Bouzon, M., Govindan, K. ve Rodriguez, C. M. T. (2018). Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resources, Conservation And Recycling, 128, 315-335. Doi: https://doi.org/10.1016/j.resconrec.2016 .11.022
  • Brito, M., Flapper, S. D. ve Dekker, R. (2002). Reverse logistics (No. EI 2002-21). Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://repub.eur.nl/pub/561/feweco20020605160859.pdf
  • Brito, M. P. ve Dekker, R. (2003). Modelling product returns in inventory control—exploring the validity of general assumptions. International Journal of Production Economics, 81, 225-241. Doi: https://doi.org/10.1016/S0925-5273(02)00275-X
  • Byrne, P. M. ve Deeb, A. (1993). Logistics must meet the “green” challenge. Transportation & Distribution, 34(2), 33-37. Erişim adresi: https://www.library.northwestern.edu/find-borrow-request/requests-interlibrary-loan/lending-institutions.html
  • Carbone, V., & Moatti, V. (2008). Greening the Supply Chain: Preliminary Results of a Global Survey. Supply Chain Forum: An International Journal, 9(2), 66–76. https://doi.org/10.1080/16258312.2008.11517200
  • Chan, F. T. ve Kai Chan, H. (2008). A survey on reverse logistics system of mobile phone industry in Hong Kong. Management Decision, 46(5), 702-708. Doi: https://doi.org/10.1108/00251740810873464
  • Chen, C. Y., Hsieh, Y. T. ve Liu, B. D. (2000, December). Design of pipelined mixed-signal fuzzy logic controller with linguistic hedge modifiers. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems.(Cat. No. 00EX394) (pp. 148-151). IEEE. Doi: 10.1109/APCCAS.2000.913428
  • Civanlar, M. R. ve Trussell, H. J. (1986). Constructing membership functions using statistical data. Fuzzy Sets And Systems, 18(1), 1-13. Doi: https://doi.org/10.1016/0165-0114(86)90024-2
  • Dubois, D. ve Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30(3), 183-224. Doi: https://doi.org/10.1016/0020-0255(83)90025-7
  • Ecer, F. ve Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal Of Cleaner Production, 266, 121981. Doi: https://doi.org/10.1016/j.jclepro.2020.121981
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S. ve Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016. Doi: https://doi.org/10.1142/S0219622 015500212
  • Ghorabaee, M. K., Zavadskas, E. K., Amiri, M. ve Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. International Journal Of Computers Communications & Control, 11(3), 358-371. Erişim adresi: https://www.proquest.com/docview/25183 62716?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly% 20Journals
  • Godal, R. C. ve Goodman, T. J. (1980). Fuzzy sets and Borel. IEEE Trans. on Systems, Man and Cybernetics, 10(10), 637. Doi: 10.1109/TSMC.1980.43 08368
  • Govindan, K., Soleimani, H. ve Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal Of Operational Research, 240(3), 603-626. Doi: https://doi.org/10.1016/j.ejor.2014.07.012
  • Govindan, K. ve Bouzon, M. (2018). From a literature review to a multi-perspective framework for reverse logistics barriers and drivers. Journal Of Cleaner Production, 187, 318-337. Doi: https://doi.org/10.1016/j.jclepro.2018.03.040
  • Guide Jr, V. D. R. ve Van Wassenhove, L. N. (2009). OR FORUM—The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18. Erişim adresi: https://www.jstor.org/stable/25614727
  • Gukaliuk, A. F. ve Katsma, V. I. (2017). Logistic resource management as a part of logistic management of enterprise. Ekonomichnyy Analiz, 27(2), 130-138. Doi: http://dx.doi.org/10.35774/econa2017.02.130
  • Gunasekaran, A. ve Ngai, E. W. (2012). The future of operations management: an outlook and analysis. International Journal of Production Economics, 135(2), 687-701. Doi: https://doi.org/10.1016/j.ijpe.2011.11.002
  • Hult, G. T. M., Ketchen, D. J. ve Arrfelt, M. (2007). Strategic supply chain management: Improving performance through a culture of competitiveness and knowledge development. Strategic Management Journal, 28(10), 1035-1052. Doi: https://doi.org/10.1002/smj.627
  • Kamber, E., Aydoğmuş, U., Aydoğmuş, H. Y., Gümüş, M. ve Kahraman, C. (2024). Prioritization of drip-irrigation pump alternatives in agricultural applications: An integrated picture fuzzy BWM&CODAS methodology. Applied Soft Computing, 154, 111308. Doi: https://doi.org/10.1016/j.asoc.2024.111308
  • Kannan, G., Pokharel, S. ve Kumar, P. S. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation And Recycling, 54(1), 28-36. Doi: https://doi.org/10.1016/j.resconrec.2009.06.004
  • Kannan, D., de Sousa Jabbour, A. B. L. ve Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal Of Operational Research, 233(2), 432-447. Doi: https://doi.org/10.1016/j.ejor.2013.07.023
  • Khan, S. A., Laalaoui, W., Hokal, F., Tareq, M. ve Ahmad, L. (2022). Connecting reverse logistics with circular economy in the context of Industry 4.0. Kybernetes, 52(12), 6279-6320. Doi: https://doi.org/10.1108/K-03-2022-0468
  • Maniya, K. ve Bhatt, M. G. (2010). A selection of material using a novel type decision-making method: Preference selection index method. Materials & Design, 31(4), 1785-1789. Doi: https://doi.org/10.1016/j.matdes.2009. 11.020
  • Menteş, A. (2000). Manevra ve sevk sistemi seçiminde bulanık çok kriterli karar verme (Doctoral dissertation, Yüksek Lisans Tezi). İTÜ Fen Bilimleri Enstitüsü
  • Minglin, J. ve Ren, H. (2022). Risk priority evaluation for power transformer parts based on intuitionistic fuzzy preference selection index method. Mathematical Problems in Engineering, 2022(1), 8366893. Doi: https://doi.org/10.1155/2022/8366893
  • Mohammadi, H., Farahani, F. V., Noroozi, M. ve Lashgari, A. (2017). Green supplier selection by developing a new group decision-making method under type 2 fuzzy uncertainty. The International Journal of Advanced Manufacturing Technology, 93, 1443-1462. Doi: https://doi.org/ 10.1007/s00170-017-0458-z
  • Nădăban, S., Dzitac, S. ve Dzitac, I. (2016). Fuzzy TOPSIS: a general view. Procedia Computer Science, 91, 823-831. Doi: https://doi.org/10.1016/ j.procs.2016.07.088
  • Plaza-Úbeda, J. A., Abad-Segura, E., de Burgos-Jiménez, J., Boteva-Asenova, A. ve Belmonte-Ureña, L. J. (2020). Trends and new challenges in the green supply chain: The reverse logistics. Sustainability, 13(1), 331. Doi: https://doi.org/10.3390/su13010331
  • Pourmehdi, M., Paydar, M. M., Ghadimi, P. ve Azadnia, A. H. (2022). Analysis and evaluation of challenges in the integration of Industry 4.0 and sustainable steel reverse logistics network. Computers & Industrial Engineering, 163, 107808. Doi: https://doi.org/10.1016/j.cie.2021.107808
  • Prakash, C. ve Barua, M. K. (2016). A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustainable Production and Consumption, 7, 66-78.
  • Prajapati, H., Kant, R. ve Shankar, R. (2019). Prioritizing the solutions of reverse logistics implementation to mitigate its barriers: A hybrid modified SWARA and WASPAS approach. Journal of Cleaner Production, 240, 118219. Doi: https://doi.org/10.1016/j.jclepro.2019.118219
  • Pumpinyo, S. ve Nitivattananon, V. (2014). Investigation of barriers and factors affecting the reverse logistics of waste management practice: a case study in Thailand. Sustainability, 6, 7048–7062. Doi: https://doi.org/10.3390/su6107048
  • Rahimifard, S., Coates, G., Staikos, T., Edwards, C. ve Abu-Bakar, M. (2009). Barriers, drivers and challenges for sustainable product recovery and recycling. International Journal of Sustainable Engineering, 2(2), 80-90. Doi: https://doi.org/10.1080/19397030903019766
  • Rogers, D. S. ve Tibben‐Lembke, R. (2001). An examination of reverse logistics practices. Journal Of Business Logistics, 22(2), 129-148.
  • Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
  • Shaharudin, M. R., Zailani, S. ve Tan, K. C. (2015). Barriers to product returns and recovery management in a developing country: investigation using multiple methods. Journal of Cleaner Production, 96, 220-232. Doi: https://doi.org/10.1016/j.jclepro.2013.12.071
  • Sirisawat, P. ve Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Computers & Industrial Engineering, 117, 303–318. Doi: https://doi.org/10.1016/j.cie.2018.01.015
  • Šomplák, R., Kůdela, J., Smejkalová, V., Nevrlý, V., Pavlas, M. ve Hrabec, D. (2019). Pricing and advertising strategies in conceptual waste management planning. Journal Of Cleaner Production, 239, 118068. Doi: https://doi.org/10.1016/j.jclepro.2019.118068
  • Soner, S. ve Önüt, S. (2006). Multi-criteria supplier selection: An ELECTRE-AHP application. Sigma, 4, 110-120. Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36(4), 535-548. Doi: https://doi.org/10.1016/j.omega.2006.11.012
  • Stanujkic, D. (2015). Extension of the ARAS method for decision-making problems with interval-valued triangular fuzzy numbers. Informatica, 26(2), 335-355. Doi: https://doi.org/10.15388/Informatica.2015.51
  • Ulutaş, A., Topal, A. ve Bakhat, R. (2019). An application of fuzzy integrated model in green supplier selection. Mathematical Problems in Engineering, 2019(1), 4256359. Doi: https://doi.org/10.1155/2019/4256359
  • Ulutaş, A., Popovic, G., Radanov, P., Stanujkic, D. ve Karabasevic, D. (2021). A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technological and Economic Development of Economy, 27(5), 1227-1249. Doi: https://doi.org/10.3846/tede.2021.15058
  • Waqas, M., Dong, Q. L., Ahmad, N., Zhu, Y. ve Nadeem, M. (2018). Critical barriers to implementation of reverse logistics in the manufacturing industry: a case study of a developing country. Sustainability, 10(11), 4202. Doi: https://doi.org/10.3390/su10114202
  • Wen, Z., Liao, H., Kazimieras Zavadskas, E. ve Al-Barakati, A. (2019). Selection third-party logistics service providers in supply chain finance by a hesitant fuzzy linguistic combined compromise solution method. Economic Research-Ekonomska İstraživanja, 32(1), 4033-4058. Doi: https://doi.org/10.1080/1331677X.2019.1678502
  • Yadav, O. P., Singh, N., Goel, P. S. ve Itabashi-Campbell, R. (2003). A framework for reliability prediction during product development process incorporating engineering judgments. Quality Engineering, 15(4), 649-662. Doi: https://doi.org/10.1081/QEN-120018396
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhang, Y. M., Huang, G. H. ve He, L. (2011). An inexact reverse logistics model for municipal solid waste management systems. Journal of Environmental Management, 92(3), 522-530. Doi: https://doi.org/10.1016/j.jenvman.2 010.09.011

TERSİNE LOJİSTİK BARİYERLERİNİ AŞMAYA YÖNELİK TEKNOLOJİ ALTERNATİFLERİNİN SEÇİMİ VE ÖNEMİNE GÖRE SIRALANMASI: BULANIK PSI VE COCOSO YÖNTEMLERİNİN UYGULANMASI

Yıl 2025, Cilt: 36 Sayı: 2, 175 - 206, 31.08.2025

Öz

Bu çalışma, tersine lojistik süreçlerinde karşılaşılan bariyerleri aşmaya yönelik teknoloji alternatiflerinin seçim sürecini değerlendirmektedir. Literatürde tersine lojistik uygulamalarının sürdürülebilir tedarik zinciri yönetimi açısından kritik bir rol oynadığı belirtilmekte, ancak operasyonel, ekonomik ve düzenleyici engellerin bu süreçleri karmaşık hale getirdiği vurgulanmaktadır. Bu bağlamda, çalışmada tersine lojistik bariyerleri kapsamlı bir literatür taraması ile belirlenmiş ve çözüm olarak değerlendirilebilecek teknoloji alternatifleri bulanık çok kriterli karar verme (ÇKKV) yöntemleriyle analiz edilmiştir. Çalışmada, kriterlerin ağırlıklandırılması için bulanık PSI yöntemi, teknoloji alternatiflerinin sıralanması için ise bulanık CoCoSo yöntemi kullanılmıştır. Bulanık mantık çerçevesinde gerçekleştirilen bu analizler, belirsizlik içeren karar süreçlerinde alternatiflerin daha gerçekçi bir biçimde değerlendirilmesine olanak sağlamaktadır. Elde edilen bulgular, Endüstri 4.0 teknolojilerinin tersine lojistik süreçlerinde en etkili çözüm olduğunu göstermektedir. Otomasyon sistemleri, yapay zekâ destekli lojistik yönetimi ve akıllı depolama çözümleri, tersine lojistik operasyonlarının etkinliğini artırarak sürecin daha sürdürülebilir bir yapıya kavuşmasını mümkün kılmaktadır. Çalışma, tersine lojistik süreçlerinde teknolojik çözümlerin sadece operasyonel verimlilik sağlamakla kalmayıp, aynı zamanda maliyetleri düşürme, atık yönetimini optimize etme ve sürdürülebilir tedarik zinciri yönetimine katkı sağlama potansiyeline sahip olduğunu ortaya koymaktadır. Karar vericilere yönelik kapsamlı bir analiz sunan bu araştırma, bulanık ÇKKV yöntemlerinin tersine lojistik alanında nasıl uygulanabileceğini göstermesi bakımından da literatüre önemli katkılar sağlamaktadır.

Kaynakça

  • Abdulrahman, M. D., Gunasekaran, A. ve Subramanian, N. (2014). Critical barriers in implementing reverse logistics in the Chinese manufacturing sectors. International Journal of Production Economics, 147, 460-471. Doi: https://doi.org/10.1016/j.ijpe.2012.08.003
  • Aitken, J. ve Harrison, A. (2013). Supply governance structures for reverse logistics systems. International Journal of Operations & Production Management, 33(6), 745-764. Doi: https://doi.org/10.1108/IJOPM-10-2011-0362
  • Agrawal, S., Singh, R. K. ve Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation And Recycling, 97, 76-92. Doi: https://doi.org/10.1016/j.resconrec.2015.02.009
  • Ali, O. A. M., Ali, A. Y. ve Sumait, B. S. (2015). Comparison between the effects of different types of membership functions on fuzzy logic controller performance. International Journal, 76, 76-83. Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ijeert.ijrsset.org/pdf/v3-i3/10.pdf
  • Ali, S. M., Arafin, A., Moktadir, M. A., Rahman, T. Ve Zahan, N. (2018). Barriers to reverse logistics in the computer supply chain using interpretive structural model. Global Journal of Flexible Systems Management, 19, 53-68. Doi: https://doi.org/10.1007/s40171-017-0176-2
  • AlKhidir, T., ve Zailani, S. (2009). Going green in supply chain towards environmental sustainability. Global Journal of Environmental Research, 3(3), 246-251. Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclef indmkaj/https://www.researchgate.net/profile/Suhaiza-Zailani/publicatio n/237691968_Going_Green_in_Supply_Chain_Towards_Environmental_Sustainability/links/0f31752dc7e493ec4d000000/Going-Green-in-Supply-Cha in-Towards-Environmental-Sustainability.pdf
  • Amini, M. M., Retzlaff-Roberts, D. ve Bienstock, C. C. (2005). Designing a reverse logistics operation for short cycle time repair services. International Journal Of Production Economics, 96(3), 367-380. Doi: https://doi.org/10.1016/j.ijpe .2004.05.010
  • Batwara, A., Sharma, V., Makkar, M. ve Giallanza, A. (2024). Impact of smart sustainable value stream mapping–Fuzzy PSI decision-making framework. Sustainable Futures, 7, 100201. Doi: https://doi.org/10.1016/j.sftr.2024 .100201
  • Bellman, R. E. ve Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141. Erişim adresi: https://www.jstor.org/ stable/2629367
  • Blackburn, J. D., Guide Jr, V. D. R., Souza, G. C. ve Van Wassenhove, L. N. (2004). Reverse supply chains for commercial returns. California Management Review, 46(2), 6-22. Doi: https://doi.org/10.2307/41166207
  • Bouzon, M., Govindan, K. ve Rodriguez, C. M. T. (2015). Reducing the extraction of minerals: Reverse logistics in the machinery manufacturing industry sector in Brazil using ISM approach. Resources Policy, 46, 27-36. Doi: https://doi.org/10.1016/j.resourpol.2015.02.001
  • Bouzon, M., Govindan, K. ve Rodriguez, C. M. T. (2018). Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resources, Conservation And Recycling, 128, 315-335. Doi: https://doi.org/10.1016/j.resconrec.2016 .11.022
  • Brito, M., Flapper, S. D. ve Dekker, R. (2002). Reverse logistics (No. EI 2002-21). Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://repub.eur.nl/pub/561/feweco20020605160859.pdf
  • Brito, M. P. ve Dekker, R. (2003). Modelling product returns in inventory control—exploring the validity of general assumptions. International Journal of Production Economics, 81, 225-241. Doi: https://doi.org/10.1016/S0925-5273(02)00275-X
  • Byrne, P. M. ve Deeb, A. (1993). Logistics must meet the “green” challenge. Transportation & Distribution, 34(2), 33-37. Erişim adresi: https://www.library.northwestern.edu/find-borrow-request/requests-interlibrary-loan/lending-institutions.html
  • Carbone, V., & Moatti, V. (2008). Greening the Supply Chain: Preliminary Results of a Global Survey. Supply Chain Forum: An International Journal, 9(2), 66–76. https://doi.org/10.1080/16258312.2008.11517200
  • Chan, F. T. ve Kai Chan, H. (2008). A survey on reverse logistics system of mobile phone industry in Hong Kong. Management Decision, 46(5), 702-708. Doi: https://doi.org/10.1108/00251740810873464
  • Chen, C. Y., Hsieh, Y. T. ve Liu, B. D. (2000, December). Design of pipelined mixed-signal fuzzy logic controller with linguistic hedge modifiers. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems.(Cat. No. 00EX394) (pp. 148-151). IEEE. Doi: 10.1109/APCCAS.2000.913428
  • Civanlar, M. R. ve Trussell, H. J. (1986). Constructing membership functions using statistical data. Fuzzy Sets And Systems, 18(1), 1-13. Doi: https://doi.org/10.1016/0165-0114(86)90024-2
  • Dubois, D. ve Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30(3), 183-224. Doi: https://doi.org/10.1016/0020-0255(83)90025-7
  • Ecer, F. ve Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal Of Cleaner Production, 266, 121981. Doi: https://doi.org/10.1016/j.jclepro.2020.121981
  • Ghorabaee, M. K., Amiri, M., Sadaghiani, J. S. ve Zavadskas, E. K. (2015). Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making, 14(05), 993-1016. Doi: https://doi.org/10.1142/S0219622 015500212
  • Ghorabaee, M. K., Zavadskas, E. K., Amiri, M. ve Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. International Journal Of Computers Communications & Control, 11(3), 358-371. Erişim adresi: https://www.proquest.com/docview/25183 62716?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly% 20Journals
  • Godal, R. C. ve Goodman, T. J. (1980). Fuzzy sets and Borel. IEEE Trans. on Systems, Man and Cybernetics, 10(10), 637. Doi: 10.1109/TSMC.1980.43 08368
  • Govindan, K., Soleimani, H. ve Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal Of Operational Research, 240(3), 603-626. Doi: https://doi.org/10.1016/j.ejor.2014.07.012
  • Govindan, K. ve Bouzon, M. (2018). From a literature review to a multi-perspective framework for reverse logistics barriers and drivers. Journal Of Cleaner Production, 187, 318-337. Doi: https://doi.org/10.1016/j.jclepro.2018.03.040
  • Guide Jr, V. D. R. ve Van Wassenhove, L. N. (2009). OR FORUM—The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18. Erişim adresi: https://www.jstor.org/stable/25614727
  • Gukaliuk, A. F. ve Katsma, V. I. (2017). Logistic resource management as a part of logistic management of enterprise. Ekonomichnyy Analiz, 27(2), 130-138. Doi: http://dx.doi.org/10.35774/econa2017.02.130
  • Gunasekaran, A. ve Ngai, E. W. (2012). The future of operations management: an outlook and analysis. International Journal of Production Economics, 135(2), 687-701. Doi: https://doi.org/10.1016/j.ijpe.2011.11.002
  • Hult, G. T. M., Ketchen, D. J. ve Arrfelt, M. (2007). Strategic supply chain management: Improving performance through a culture of competitiveness and knowledge development. Strategic Management Journal, 28(10), 1035-1052. Doi: https://doi.org/10.1002/smj.627
  • Kamber, E., Aydoğmuş, U., Aydoğmuş, H. Y., Gümüş, M. ve Kahraman, C. (2024). Prioritization of drip-irrigation pump alternatives in agricultural applications: An integrated picture fuzzy BWM&CODAS methodology. Applied Soft Computing, 154, 111308. Doi: https://doi.org/10.1016/j.asoc.2024.111308
  • Kannan, G., Pokharel, S. ve Kumar, P. S. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation And Recycling, 54(1), 28-36. Doi: https://doi.org/10.1016/j.resconrec.2009.06.004
  • Kannan, D., de Sousa Jabbour, A. B. L. ve Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal Of Operational Research, 233(2), 432-447. Doi: https://doi.org/10.1016/j.ejor.2013.07.023
  • Khan, S. A., Laalaoui, W., Hokal, F., Tareq, M. ve Ahmad, L. (2022). Connecting reverse logistics with circular economy in the context of Industry 4.0. Kybernetes, 52(12), 6279-6320. Doi: https://doi.org/10.1108/K-03-2022-0468
  • Maniya, K. ve Bhatt, M. G. (2010). A selection of material using a novel type decision-making method: Preference selection index method. Materials & Design, 31(4), 1785-1789. Doi: https://doi.org/10.1016/j.matdes.2009. 11.020
  • Menteş, A. (2000). Manevra ve sevk sistemi seçiminde bulanık çok kriterli karar verme (Doctoral dissertation, Yüksek Lisans Tezi). İTÜ Fen Bilimleri Enstitüsü
  • Minglin, J. ve Ren, H. (2022). Risk priority evaluation for power transformer parts based on intuitionistic fuzzy preference selection index method. Mathematical Problems in Engineering, 2022(1), 8366893. Doi: https://doi.org/10.1155/2022/8366893
  • Mohammadi, H., Farahani, F. V., Noroozi, M. ve Lashgari, A. (2017). Green supplier selection by developing a new group decision-making method under type 2 fuzzy uncertainty. The International Journal of Advanced Manufacturing Technology, 93, 1443-1462. Doi: https://doi.org/ 10.1007/s00170-017-0458-z
  • Nădăban, S., Dzitac, S. ve Dzitac, I. (2016). Fuzzy TOPSIS: a general view. Procedia Computer Science, 91, 823-831. Doi: https://doi.org/10.1016/ j.procs.2016.07.088
  • Plaza-Úbeda, J. A., Abad-Segura, E., de Burgos-Jiménez, J., Boteva-Asenova, A. ve Belmonte-Ureña, L. J. (2020). Trends and new challenges in the green supply chain: The reverse logistics. Sustainability, 13(1), 331. Doi: https://doi.org/10.3390/su13010331
  • Pourmehdi, M., Paydar, M. M., Ghadimi, P. ve Azadnia, A. H. (2022). Analysis and evaluation of challenges in the integration of Industry 4.0 and sustainable steel reverse logistics network. Computers & Industrial Engineering, 163, 107808. Doi: https://doi.org/10.1016/j.cie.2021.107808
  • Prakash, C. ve Barua, M. K. (2016). A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustainable Production and Consumption, 7, 66-78.
  • Prajapati, H., Kant, R. ve Shankar, R. (2019). Prioritizing the solutions of reverse logistics implementation to mitigate its barriers: A hybrid modified SWARA and WASPAS approach. Journal of Cleaner Production, 240, 118219. Doi: https://doi.org/10.1016/j.jclepro.2019.118219
  • Pumpinyo, S. ve Nitivattananon, V. (2014). Investigation of barriers and factors affecting the reverse logistics of waste management practice: a case study in Thailand. Sustainability, 6, 7048–7062. Doi: https://doi.org/10.3390/su6107048
  • Rahimifard, S., Coates, G., Staikos, T., Edwards, C. ve Abu-Bakar, M. (2009). Barriers, drivers and challenges for sustainable product recovery and recycling. International Journal of Sustainable Engineering, 2(2), 80-90. Doi: https://doi.org/10.1080/19397030903019766
  • Rogers, D. S. ve Tibben‐Lembke, R. (2001). An examination of reverse logistics practices. Journal Of Business Logistics, 22(2), 129-148.
  • Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
  • Shaharudin, M. R., Zailani, S. ve Tan, K. C. (2015). Barriers to product returns and recovery management in a developing country: investigation using multiple methods. Journal of Cleaner Production, 96, 220-232. Doi: https://doi.org/10.1016/j.jclepro.2013.12.071
  • Sirisawat, P. ve Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Computers & Industrial Engineering, 117, 303–318. Doi: https://doi.org/10.1016/j.cie.2018.01.015
  • Šomplák, R., Kůdela, J., Smejkalová, V., Nevrlý, V., Pavlas, M. ve Hrabec, D. (2019). Pricing and advertising strategies in conceptual waste management planning. Journal Of Cleaner Production, 239, 118068. Doi: https://doi.org/10.1016/j.jclepro.2019.118068
  • Soner, S. ve Önüt, S. (2006). Multi-criteria supplier selection: An ELECTRE-AHP application. Sigma, 4, 110-120. Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36(4), 535-548. Doi: https://doi.org/10.1016/j.omega.2006.11.012
  • Stanujkic, D. (2015). Extension of the ARAS method for decision-making problems with interval-valued triangular fuzzy numbers. Informatica, 26(2), 335-355. Doi: https://doi.org/10.15388/Informatica.2015.51
  • Ulutaş, A., Topal, A. ve Bakhat, R. (2019). An application of fuzzy integrated model in green supplier selection. Mathematical Problems in Engineering, 2019(1), 4256359. Doi: https://doi.org/10.1155/2019/4256359
  • Ulutaş, A., Popovic, G., Radanov, P., Stanujkic, D. ve Karabasevic, D. (2021). A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technological and Economic Development of Economy, 27(5), 1227-1249. Doi: https://doi.org/10.3846/tede.2021.15058
  • Waqas, M., Dong, Q. L., Ahmad, N., Zhu, Y. ve Nadeem, M. (2018). Critical barriers to implementation of reverse logistics in the manufacturing industry: a case study of a developing country. Sustainability, 10(11), 4202. Doi: https://doi.org/10.3390/su10114202
  • Wen, Z., Liao, H., Kazimieras Zavadskas, E. ve Al-Barakati, A. (2019). Selection third-party logistics service providers in supply chain finance by a hesitant fuzzy linguistic combined compromise solution method. Economic Research-Ekonomska İstraživanja, 32(1), 4033-4058. Doi: https://doi.org/10.1080/1331677X.2019.1678502
  • Yadav, O. P., Singh, N., Goel, P. S. ve Itabashi-Campbell, R. (2003). A framework for reliability prediction during product development process incorporating engineering judgments. Quality Engineering, 15(4), 649-662. Doi: https://doi.org/10.1081/QEN-120018396
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhang, Y. M., Huang, G. H. ve He, L. (2011). An inexact reverse logistics model for municipal solid waste management systems. Journal of Environmental Management, 92(3), 522-530. Doi: https://doi.org/10.1016/j.jenvman.2 010.09.011
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Eren Kamber 0000-0002-6426-9936

Erken Görünüm Tarihi 21 Ağustos 2025
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 7 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 2

Kaynak Göster

APA Kamber, E. (2025). TERSİNE LOJİSTİK BARİYERLERİNİ AŞMAYA YÖNELİK TEKNOLOJİ ALTERNATİFLERİNİN SEÇİMİ VE ÖNEMİNE GÖRE SIRALANMASI: BULANIK PSI VE COCOSO YÖNTEMLERİNİN UYGULANMASI. Endüstri Mühendisliği, 36(2), 175-206.

19736      14617      26287       15235           15236           15240      15242