Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de ipekböceği Bombyx mori L., 1758 (Lepidoptera: Bombycidae)’nin Bursa Beyazı ırkında Aspergillus flavus Link (Eurotiales: Aspergillaceae)’un görülmesi: İzolasyon, karakterizasyon ve patojenitesi

Yıl 2025, Cilt: 49 Sayı: 4, 389 - 399, 06.01.2026

Öz

İpekböceği, Bombyx mori L., 1758 (Lepidoptera: Bombycidae), Türkiye’de uzun yıllardır önemli bir gelir kaynağı olarak yetiştirilmektedir. Ancak mantar hastalıkları, ipekböceği yetiştiriciliği üzerinde yıkıcı etkiler yaratabilir. Ağustos 2024’te, İstanbul’da bir B. mori kültüründe çok sayıda sertleşmiş, ölü larva tespit edilmiş ve incelenmek üzere laboratuvara götürülmüştür. Mikroskobik incelemeler, enfeksiyon kaynağının küresel konidilere sahip bir mantar olduğunu ortaya koymuştur. Kültüre edilen mantardan DNA ekstrakte edilmiş ve ITS geni, dizisinin belirlenmesi amacıyla çoğaltılmıştır. Dizileme sonuçlarına göre mantar, Aspergillus flavus Link (Eurotiales: Aspergillaceae) olarak tanımlanmıştır. Filogenetik analizler, söz konusu izolatın Çin izolatlarına yakın olduğunu göstermiştir. Biyolojik testlerde, 5 farklı dozda A. flavus (1 × 10³ ila 1 × 10⁷ konidi/mL) 30 adet 5. dönem B. mori larvasına püskürtülmüştür. Uygulamanın 10. gününde en yüksek dozda (1 × 10⁷ konidi/mL) %100 ölüm gözlemlenmiştir. LD50 değeri 3.32 × 10³ konidi/mL olarak hesaplanmıştır. Aspergillus flavus, aspergillozise yol açması ve aflatoksin üretmesi nedeniyle hem B. mori hem de diğer organizmalar için ciddi bir tehdit oluşturmaktadır. Bu çalışma, Türkiye’de B. mori’de A. flavus enfeksiyonuna dair ilk kanıtı sunmakta ve larvaların bu mantara karşı oldukça duyarlı olduğunu göstermektedir. Bulgular, ipekböceklerinin sağlığını korumak ve ipek üretiminde sürdürülebilirliği sağlamak için sürekli izleme ve etkili antifungal kontrol stratejilerinin uygulanması gerektiğini vurgulamaktadır.

Teşekkür

We thank the High Technology Research and Application Center (YUTAM) for supporting the research facilities used in this study.

Kaynakça

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Abdelli, N., L. Peng & C. Keping, 2018. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environmental Science and Pollution Research, 25 (35): 35048-35054.
  • Aoki, K., 1971. Silkworm diseases in Thailand. Bulletin of the Thai Sericultural Research and Training Centre,1: 102-108.
  • Aoki, K., L. Wadee, L. Israngkul, I. Ayuthaya & N. Sinchaisri, 1972. On silkworm diseases, especially pebrine and Aspergillus disease found in 1971. Bulletin of the Thai Sericultural Research and Training Centre, 7 (2): 72-76.
  • Amaike, S. & N. P. Keller, 2011. Aspergillus flavus. Annual Review of Phytopathology, 49 (1): 107-133.
  • Ashraf, H. & A. Qamar, 2023. Silkworm Bombyx mori as a model organism: a review. Physiological Entomology, 48 (4): 107-121.
  • Atav, R. & A. Demir, 2009. Silk Fibers gained from non-mulberry silkworms. Electronic Journal of Textile Technologies, 3 (4): 56-64.
  • Atav, R. & O. Namırtı, 2011. Background and the present status of the silk fibers. Journal of Engineering Science and Design, 1 (3): 112-119.
  • Baki, D., M. Kırışık & F. Erler, 2020. Antalya İli topraklarından Galleria mellonella kullanılarak izole edilen potansiyel entomopatojen fungus izolatlarının Myzus persicae’e etkilerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 11 (1): 43-54 (in Turkish with abstract in English).
  • Baysal, S., 2013. Ipekbocegi Yeniden 'Inficar'a Hazirlaniyor. Bursa'da Yasam Dergisi, Aralık: 190-195 (in Turkish)
  • Bhat, A., 2021. Management of white muscardine disease of silkworm (Bombyx mori L.) and improvement of economic characters by using botanicals: A review. Journal of Entomological Research, 45 (suppl): 1012-1019.
  • Chinnaswamy, K. P., 1983. Studies on the Aspergillosis of Silkworm Bombyx mori L. Caused by Aspergillus tamari Kita. University of Agriculture Sciences, Bangalore (Unpublished) Master (Agri.) Thesis, Government of Karnataka, India, 85 pp.
  • Das, G. M. R., 1950. Diseases of Silkworm Monograph on Cottage Industries. No1, Govt. India Press Calcutta, 25 pp.
  • Deepika, I., K. V. Ramesh, I. Kumar, A. Singh, R. Debnath, H. Dubey, P. Shukla, K. M. Ponnuvel, S. M. Moorthy & G. Subrahmanyam, 2024. Molecular diagnostics in sericulture: A paradigm shift towards disease diagnosis in silkworms. Entomologia Experimentalis et Applicata, 172 (5): 372-382.
  • Eilenberg, J., J. M. Vlak, C. Nielsen-LeRoux, S. Cappellozza & A. B. Jensen, 2015. Diseases in insects produced for food and feed. Journal of Insects as Food and Feed, 1 (2): 87-102.
  • Gautam, M. P., D. K. Singh, S. N. Singh, S. P. Singh, M. Kumar & S. Singh, 2022. A review on silkworm (Bombyx mori Linn.) an economic important insect. Biological Forum an International Journal. 14 (4a): 482-491.
  • Gençer, D., H. B. Şalvarcı, B. Ulaşlı, F. C. Cengiz & İ. Demir, 2023a. Bacterial diversity associated with the Hatay yellow strain silkworm (Bombyx mori L.): Isolation, identification and characterization. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28 (3): 593-605.
  • Gençer, D., B. Ulaşlı, F. C. Cengiz & İ. Demir, 2023b. Isolation and identification of a fungal pathogen, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) from the Hatay yellow strain of silkworm, Bombyx mori L., 1758 (Lepidoptera: Bombycidae) in Türkiye. Turkish Journal of Entomology, 47 (2): 189-197.
  • Georgianna, D. R., N. D. Fedorova, J. L. Burroughs, A. L., Dolezal, J. W., Bok, S. Horowitz‐Brown, C. P. Woloshuk, J. Yu, N. P. Keller & G. A. Payne, 2010. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters. Molecular Plant Pathology, 11 (2): 213-226.
  • Govindan, R. & M. C. Devaiah, 1995. Aspergillosis of silkworm. Silkworm Pathology Technical Bulletin (Department of Sericulture, University of Agricultural Sciences, Bangalore, Government of Karnataka, India), No.1: 68.
  • Güven, Ö. & O. Çaltili, 2016. Effects of combined treatments of entomopathogenic and opportunistic soil fungi on Galleria mellonella (L.) (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control, 26 (4): 747-751.
  • Habeanu, M., A. Gheorghe & T. Mihalcea, 2023. Silkworm Bombyx mori-sustainability and economic opportunity, particularly for Romania. Agriculture, 13 (6): 1209 (1-13).
  • Ishii, M., Y. Matsumoto & K. Sekimizu, 2015. Usefulness of silkworm as a model animal for understanding the molecular mechanisms of fungal pathogenicity. Drug Discoveries & Therapeutics, 9 (4): 234-237.
  • Ishii, M., Y. Matsumoto, I. Nakamura & K. Sekimizu, 2017. Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Drug Discoveries & Therapeutics, 11 (1): 1-5.
  • Jayaramaiah, M., 1986. “Muscardine diseases in scarabaeids on their utilization in the management of grub pests in India, 289-290”. Proceedings of the 2nd International Conference on Plant Protection in the Tropics (Extended Abstracts), 17-20 March 1986, Genting Highlands, Malaysia. Malaysian Plant Protection Society, Serdang, Selangor, 743 pp.
  • Kawakami, K., 1975. Susceptibility of several varieties of the silkworm, Bombyx mori L. to Aspergillus disease and germination of fungus spores in larval haemolymph. The Journal of Sericultural Science of Japan, 44 (1): 39-44.
  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2): 111-120.
  • Klich, M. A., 2007. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience, 48 (2): 71-80.
  • Koz, C. & Ö. Güven, 2014. Kahramanmaraş merkez köylerindeki buğday tarlalarından izole edilen entomopatojen funguslar. Türkiye Biyolojik Mücadele Dergisi, 5 (1): 39-51.
  • Kumar, V., 2007. The scanning electron microscopic study of the infection and conidial development of Aspergillus tamarii Kita on its host, the silkworm, Bombyx mori Linn. Central European Journal of Biology, 2 (4): 574-587.
  • Kumar, V., G. P. Singh & A. M. Babu, 2004. Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link: Fries infecting silkworm, Bombyx mori Linn. Mycopathologia, 157 (1): 127-135.
  • Li, A., Q. Zhao, S. Tang, Z. Zhang, S. Pan & G. Shen, 2005. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Journal of Genetics, 84 (2): 137-142.
  • Li, K., Z. Dong & M. Pan, 2023. Common strategies in silkworm disease resistance breeding research. Pest Management Science, 79 (7): 2287-2298.
  • Li, Y. P., W. Song, S. L. Shi, Y. Q. Liu, M. H. Pan, F. Y. Dai, C. Le & Z. H. Xiang, 2010. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina. Genetics and Molecular Biology, 33 (1): 186-189.
  • Matsumoto, Y. & K. Sekimizu, 2019. Silkworm as an experimental animal for research on fungal infections. Microbiology and Immunology, 63 (2): 41-50.
  • Matsumoto, Y., S. Eshima, S. Kurakado & T. Sugita, 2024. A silkworm infection model for evaluating in vivo biofilm formation by pathogenic fungi. Medical Mycology Journal, 65 (1): 7-12.
  • Mavilashaw, V. P., M. Saranya & N. Aruna, 2025. Silkworm diseases and management: A review. International Journal of Advanced Biochemistry Research, 9 (10): 277-284.
  • Mohanan, N. M., S. K. Guptal, & P. Mitra, 2007. Antimycotic activity of Allium sativum against Beauveria bassiana, pathogenic fungus of white muscardine disease in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). International Journal of Industrial Entomology and Biomaterials, 14 (2): 81-85.
  • Mohanraj, P., S. Subramanian & C. A. Mahalingam, 2015. Survey and characterization of Aspergillosis in Chawki Rearing Centres of Western Zone of Tamil Nadu. Lifesciences Leaflets, 65: 37-42.
  • Murakoshi, S., M. Ichinoe, H. Kumata & H. Kurata, 1977. Productivity of aflatoxins and some biological effects in Aspergillus flavus Link isolated from cadaver of the silkworm, Bombyx mori L. Applied Entomology and Zoology, 12 (3): 255-259.
  • Narayanaswamy, T. K., & R. Govindan, 1989. Comperative susceptibility of some breeds of silkworm, Bombyx mori L. to Aspergillus flavus Link. Sericologia, 29 (1): 33-37.
  • Nomura, H., 1897. Occurrence of Aspergillus diseases in silkworm larvae. The Botanical Magazine (Tokyo), 11: 31-37.
  • Odabaş, E., B. Günbey, Y. Zengin & H. A. Sarıkaya, 2020. Dünya ve Anadolu'da İpek Böceğinin Yolculuğu. Hayvan Bilimi ve Ürünleri Dergisi, 3 (1): 75-84 (in Turkish).
  • Ohtomo, T., S. Murakoshi, J. Sugiyama & H. Kurata, 1975. Detection of aflatoxin B1 in silkworm larvae attacked by an Aspergillus flavus isolate from a sericultural farm. Applied Microbiology, 30 (6): 1034-1035.
  • Pachiappan, P., M. C. Aruchamy, & S. K. Ramanna, 2009. Evaluation of Antibacterial Efficacy of Certain Botanicals Against Bacterial Pathogen Bacillus sp. of Silkworm, Bombyx mori L. International Journal of Industrial Entomology and Biomaterials, 18 (1): 49-52.
  • Panthee, S., H. Hamamoto, Y. Nishiyama, A. Paudel & K. Sekimizu, 2021. Novel pathogenic Mucorales identified using the silkworm infection model. Journal of Fungi, 7 (11): 995 (1-13).
  • Rajakumari, D. S., C. Padmalatha, S. S. M. Das, & A. J. A. Ranjitsingh, 2007. Efficacy of probiotic and neutraceutical feed supplements against Flacherie disease in mulberry silkworm, Bombyx mori L. Indian Journal of Sericulture, 46 (2): 179-182.
  • Şahin, F. & Y. Yanar, 2023. Isolation and identification of entomopathogenic fungi from coastal districts of Ordu province, Turkey. Plant Protection Bulletin, 63 (3): 17-24.
  • Santoso, S., 2017. Menguasai statistik dengan SPSS 24. Elex Media Komputindo, Jakarta, Indonesia (in Indonesian).
  • Singh, T. & B. Saratchandra, 2004. Principles and techniques of silkworm seed production. Discovery Publishing House, New Delhi, India, 361 pp.
  • Sivaprasad, V., K. Rahul & P. Makwana, 2021. Immunodiagnosis of silkworm diseases. Methods in Microbiology, 49 (1): 27-46.
  • Sivaprasad, V., N. Chandrakanth & S. M. Moorthy, 2022. “Genetics and Genomics of Bombyx mori L., 127-209”. In: Genetic Methods and Tools for Managing Crop Pests. Singapore: Springer Nature Singapore, 669 pp.
  • Steinhaus, E. A., 1945. Insect pathology and biological control. Journal of Economic Entomology, 38: 591-596.
  • Suraporn, S., J. Liu, F. Ren, L. Wang, M. Feng, O. Terenius & L. Swevers, 2025. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. Insects, 16 (2): 162 (1-18).
  • White, T. J., T. Bruns, S. Lee & J. W. Taylor, 1990. “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, 315-322”. In: PCR Protocols: A Guide to Methods and Applications, 18 (1): 461 pp.
  • Yılmaz, O., Y. E. Erturk, F. Coskun & M. Ertugrul, 2016. Biology of silkworm (Bombyx mori) in Turkey. Journal of Agricultural, Food and Environmental Sciences, 68 (1): 14-24.
  • Yokohama, T., 1954. Synthesised Science of Sericulture, Translated by Central Silk Board, India 398 pp.
  • Zhang, S., B. J. Monahan, J. S. Tkacz & B. Scott, 2004. Indole-diterpene gene cluster from Aspergillus flavus. Applied and Environmental Microbiology, 70 (11): 6875-6883.

On the occurrence of Aspergillus flavus Link (Eurotiales: Aspergillaceae) on the Bursa white strain of the silkworm, Bombyx mori L., 1758 (Lepidoptera: Bombycidae) in Türkiye: Isolation, characterization, and pathogenicity

Yıl 2025, Cilt: 49 Sayı: 4, 389 - 399, 06.01.2026

Öz

The silkworm, Bombyx mori L., 1758 (Lepidoptera: Bombycidae) has been cultivated in Türkiye for many years as a valuable source of income. However, fungal diseases can have a devastating impact on silkworm farming. In August 2024, numerous hardened, dead silkworm larvae were discovered in a B. mori culture in Istanbul and subsequently taken to a laboratory for examination. Microscopic examination revealed that the source of the infection was a fungus with spherical conidia. DNA was extracted from the cultured fungus, and the ITS gene was amplified and sequenced. According to the sequencing results, the fungus was identified as Aspergillus flavus Link (Eurotiales: Aspergillaceae). Phylogenetic analyses showed that it was closely related to the Chinese isolates. In the bioassay, five doses of A. flavus (1 × 103 to 1 × 107 conidia/mL-1) were sprayed on 30 5th instar B. mori larvae. On the 10th day of application, 100% mortality was observed at the highest dose (1 × 107 conidia/mL-1). The LD50 was calculated to be 3.32 × 103 conidia/mL-1. Aspergillus flavus poses a significant threat to both B. mori and other organisms, as it causes aspergillosis and produces aflatoxin. This study provides the first evidence of A. flavus infection in B. mori in Türkiye, demonstrating that the larvae are highly susceptible to this fungus. The findings highlight the need for continuous monitoring and the implementation of effective antifungal control strategies to protect silkworm health and sustain sericulture productivity.

Teşekkür

We thank the High Technology Research and Application Center (YUTAM) for supporting the research facilities used in this study.

Kaynakça

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Abdelli, N., L. Peng & C. Keping, 2018. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environmental Science and Pollution Research, 25 (35): 35048-35054.
  • Aoki, K., 1971. Silkworm diseases in Thailand. Bulletin of the Thai Sericultural Research and Training Centre,1: 102-108.
  • Aoki, K., L. Wadee, L. Israngkul, I. Ayuthaya & N. Sinchaisri, 1972. On silkworm diseases, especially pebrine and Aspergillus disease found in 1971. Bulletin of the Thai Sericultural Research and Training Centre, 7 (2): 72-76.
  • Amaike, S. & N. P. Keller, 2011. Aspergillus flavus. Annual Review of Phytopathology, 49 (1): 107-133.
  • Ashraf, H. & A. Qamar, 2023. Silkworm Bombyx mori as a model organism: a review. Physiological Entomology, 48 (4): 107-121.
  • Atav, R. & A. Demir, 2009. Silk Fibers gained from non-mulberry silkworms. Electronic Journal of Textile Technologies, 3 (4): 56-64.
  • Atav, R. & O. Namırtı, 2011. Background and the present status of the silk fibers. Journal of Engineering Science and Design, 1 (3): 112-119.
  • Baki, D., M. Kırışık & F. Erler, 2020. Antalya İli topraklarından Galleria mellonella kullanılarak izole edilen potansiyel entomopatojen fungus izolatlarının Myzus persicae’e etkilerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 11 (1): 43-54 (in Turkish with abstract in English).
  • Baysal, S., 2013. Ipekbocegi Yeniden 'Inficar'a Hazirlaniyor. Bursa'da Yasam Dergisi, Aralık: 190-195 (in Turkish)
  • Bhat, A., 2021. Management of white muscardine disease of silkworm (Bombyx mori L.) and improvement of economic characters by using botanicals: A review. Journal of Entomological Research, 45 (suppl): 1012-1019.
  • Chinnaswamy, K. P., 1983. Studies on the Aspergillosis of Silkworm Bombyx mori L. Caused by Aspergillus tamari Kita. University of Agriculture Sciences, Bangalore (Unpublished) Master (Agri.) Thesis, Government of Karnataka, India, 85 pp.
  • Das, G. M. R., 1950. Diseases of Silkworm Monograph on Cottage Industries. No1, Govt. India Press Calcutta, 25 pp.
  • Deepika, I., K. V. Ramesh, I. Kumar, A. Singh, R. Debnath, H. Dubey, P. Shukla, K. M. Ponnuvel, S. M. Moorthy & G. Subrahmanyam, 2024. Molecular diagnostics in sericulture: A paradigm shift towards disease diagnosis in silkworms. Entomologia Experimentalis et Applicata, 172 (5): 372-382.
  • Eilenberg, J., J. M. Vlak, C. Nielsen-LeRoux, S. Cappellozza & A. B. Jensen, 2015. Diseases in insects produced for food and feed. Journal of Insects as Food and Feed, 1 (2): 87-102.
  • Gautam, M. P., D. K. Singh, S. N. Singh, S. P. Singh, M. Kumar & S. Singh, 2022. A review on silkworm (Bombyx mori Linn.) an economic important insect. Biological Forum an International Journal. 14 (4a): 482-491.
  • Gençer, D., H. B. Şalvarcı, B. Ulaşlı, F. C. Cengiz & İ. Demir, 2023a. Bacterial diversity associated with the Hatay yellow strain silkworm (Bombyx mori L.): Isolation, identification and characterization. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28 (3): 593-605.
  • Gençer, D., B. Ulaşlı, F. C. Cengiz & İ. Demir, 2023b. Isolation and identification of a fungal pathogen, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) from the Hatay yellow strain of silkworm, Bombyx mori L., 1758 (Lepidoptera: Bombycidae) in Türkiye. Turkish Journal of Entomology, 47 (2): 189-197.
  • Georgianna, D. R., N. D. Fedorova, J. L. Burroughs, A. L., Dolezal, J. W., Bok, S. Horowitz‐Brown, C. P. Woloshuk, J. Yu, N. P. Keller & G. A. Payne, 2010. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters. Molecular Plant Pathology, 11 (2): 213-226.
  • Govindan, R. & M. C. Devaiah, 1995. Aspergillosis of silkworm. Silkworm Pathology Technical Bulletin (Department of Sericulture, University of Agricultural Sciences, Bangalore, Government of Karnataka, India), No.1: 68.
  • Güven, Ö. & O. Çaltili, 2016. Effects of combined treatments of entomopathogenic and opportunistic soil fungi on Galleria mellonella (L.) (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control, 26 (4): 747-751.
  • Habeanu, M., A. Gheorghe & T. Mihalcea, 2023. Silkworm Bombyx mori-sustainability and economic opportunity, particularly for Romania. Agriculture, 13 (6): 1209 (1-13).
  • Ishii, M., Y. Matsumoto & K. Sekimizu, 2015. Usefulness of silkworm as a model animal for understanding the molecular mechanisms of fungal pathogenicity. Drug Discoveries & Therapeutics, 9 (4): 234-237.
  • Ishii, M., Y. Matsumoto, I. Nakamura & K. Sekimizu, 2017. Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Drug Discoveries & Therapeutics, 11 (1): 1-5.
  • Jayaramaiah, M., 1986. “Muscardine diseases in scarabaeids on their utilization in the management of grub pests in India, 289-290”. Proceedings of the 2nd International Conference on Plant Protection in the Tropics (Extended Abstracts), 17-20 March 1986, Genting Highlands, Malaysia. Malaysian Plant Protection Society, Serdang, Selangor, 743 pp.
  • Kawakami, K., 1975. Susceptibility of several varieties of the silkworm, Bombyx mori L. to Aspergillus disease and germination of fungus spores in larval haemolymph. The Journal of Sericultural Science of Japan, 44 (1): 39-44.
  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2): 111-120.
  • Klich, M. A., 2007. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience, 48 (2): 71-80.
  • Koz, C. & Ö. Güven, 2014. Kahramanmaraş merkez köylerindeki buğday tarlalarından izole edilen entomopatojen funguslar. Türkiye Biyolojik Mücadele Dergisi, 5 (1): 39-51.
  • Kumar, V., 2007. The scanning electron microscopic study of the infection and conidial development of Aspergillus tamarii Kita on its host, the silkworm, Bombyx mori Linn. Central European Journal of Biology, 2 (4): 574-587.
  • Kumar, V., G. P. Singh & A. M. Babu, 2004. Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus flavus Link: Fries infecting silkworm, Bombyx mori Linn. Mycopathologia, 157 (1): 127-135.
  • Li, A., Q. Zhao, S. Tang, Z. Zhang, S. Pan & G. Shen, 2005. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Journal of Genetics, 84 (2): 137-142.
  • Li, K., Z. Dong & M. Pan, 2023. Common strategies in silkworm disease resistance breeding research. Pest Management Science, 79 (7): 2287-2298.
  • Li, Y. P., W. Song, S. L. Shi, Y. Q. Liu, M. H. Pan, F. Y. Dai, C. Le & Z. H. Xiang, 2010. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina. Genetics and Molecular Biology, 33 (1): 186-189.
  • Matsumoto, Y. & K. Sekimizu, 2019. Silkworm as an experimental animal for research on fungal infections. Microbiology and Immunology, 63 (2): 41-50.
  • Matsumoto, Y., S. Eshima, S. Kurakado & T. Sugita, 2024. A silkworm infection model for evaluating in vivo biofilm formation by pathogenic fungi. Medical Mycology Journal, 65 (1): 7-12.
  • Mavilashaw, V. P., M. Saranya & N. Aruna, 2025. Silkworm diseases and management: A review. International Journal of Advanced Biochemistry Research, 9 (10): 277-284.
  • Mohanan, N. M., S. K. Guptal, & P. Mitra, 2007. Antimycotic activity of Allium sativum against Beauveria bassiana, pathogenic fungus of white muscardine disease in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). International Journal of Industrial Entomology and Biomaterials, 14 (2): 81-85.
  • Mohanraj, P., S. Subramanian & C. A. Mahalingam, 2015. Survey and characterization of Aspergillosis in Chawki Rearing Centres of Western Zone of Tamil Nadu. Lifesciences Leaflets, 65: 37-42.
  • Murakoshi, S., M. Ichinoe, H. Kumata & H. Kurata, 1977. Productivity of aflatoxins and some biological effects in Aspergillus flavus Link isolated from cadaver of the silkworm, Bombyx mori L. Applied Entomology and Zoology, 12 (3): 255-259.
  • Narayanaswamy, T. K., & R. Govindan, 1989. Comperative susceptibility of some breeds of silkworm, Bombyx mori L. to Aspergillus flavus Link. Sericologia, 29 (1): 33-37.
  • Nomura, H., 1897. Occurrence of Aspergillus diseases in silkworm larvae. The Botanical Magazine (Tokyo), 11: 31-37.
  • Odabaş, E., B. Günbey, Y. Zengin & H. A. Sarıkaya, 2020. Dünya ve Anadolu'da İpek Böceğinin Yolculuğu. Hayvan Bilimi ve Ürünleri Dergisi, 3 (1): 75-84 (in Turkish).
  • Ohtomo, T., S. Murakoshi, J. Sugiyama & H. Kurata, 1975. Detection of aflatoxin B1 in silkworm larvae attacked by an Aspergillus flavus isolate from a sericultural farm. Applied Microbiology, 30 (6): 1034-1035.
  • Pachiappan, P., M. C. Aruchamy, & S. K. Ramanna, 2009. Evaluation of Antibacterial Efficacy of Certain Botanicals Against Bacterial Pathogen Bacillus sp. of Silkworm, Bombyx mori L. International Journal of Industrial Entomology and Biomaterials, 18 (1): 49-52.
  • Panthee, S., H. Hamamoto, Y. Nishiyama, A. Paudel & K. Sekimizu, 2021. Novel pathogenic Mucorales identified using the silkworm infection model. Journal of Fungi, 7 (11): 995 (1-13).
  • Rajakumari, D. S., C. Padmalatha, S. S. M. Das, & A. J. A. Ranjitsingh, 2007. Efficacy of probiotic and neutraceutical feed supplements against Flacherie disease in mulberry silkworm, Bombyx mori L. Indian Journal of Sericulture, 46 (2): 179-182.
  • Şahin, F. & Y. Yanar, 2023. Isolation and identification of entomopathogenic fungi from coastal districts of Ordu province, Turkey. Plant Protection Bulletin, 63 (3): 17-24.
  • Santoso, S., 2017. Menguasai statistik dengan SPSS 24. Elex Media Komputindo, Jakarta, Indonesia (in Indonesian).
  • Singh, T. & B. Saratchandra, 2004. Principles and techniques of silkworm seed production. Discovery Publishing House, New Delhi, India, 361 pp.
  • Sivaprasad, V., K. Rahul & P. Makwana, 2021. Immunodiagnosis of silkworm diseases. Methods in Microbiology, 49 (1): 27-46.
  • Sivaprasad, V., N. Chandrakanth & S. M. Moorthy, 2022. “Genetics and Genomics of Bombyx mori L., 127-209”. In: Genetic Methods and Tools for Managing Crop Pests. Singapore: Springer Nature Singapore, 669 pp.
  • Steinhaus, E. A., 1945. Insect pathology and biological control. Journal of Economic Entomology, 38: 591-596.
  • Suraporn, S., J. Liu, F. Ren, L. Wang, M. Feng, O. Terenius & L. Swevers, 2025. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. Insects, 16 (2): 162 (1-18).
  • White, T. J., T. Bruns, S. Lee & J. W. Taylor, 1990. “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, 315-322”. In: PCR Protocols: A Guide to Methods and Applications, 18 (1): 461 pp.
  • Yılmaz, O., Y. E. Erturk, F. Coskun & M. Ertugrul, 2016. Biology of silkworm (Bombyx mori) in Turkey. Journal of Agricultural, Food and Environmental Sciences, 68 (1): 14-24.
  • Yokohama, T., 1954. Synthesised Science of Sericulture, Translated by Central Silk Board, India 398 pp.
  • Zhang, S., B. J. Monahan, J. S. Tkacz & B. Scott, 2004. Indole-diterpene gene cluster from Aspergillus flavus. Applied and Environmental Microbiology, 70 (11): 6875-6883.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımda Entomoloji
Bölüm Araştırma Makalesi
Yazarlar

Yasemin Aş Güler 0009-0003-3440-867X

Gözde Büşra Eroğlu 0000-0001-8988-1315

Gönderilme Tarihi 3 Haziran 2025
Kabul Tarihi 18 Aralık 2025
Yayımlanma Tarihi 6 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 4

Kaynak Göster

APA Aş Güler, Y., & Eroğlu, G. B. (2026). On the occurrence of Aspergillus flavus Link (Eurotiales: Aspergillaceae) on the Bursa white strain of the silkworm, Bombyx mori L., 1758 (Lepidoptera: Bombycidae) in Türkiye: Isolation, characterization, and pathogenicity. Turkish Journal of Entomology, 49(4), 389-399. https://doi.org/10.16970/entoted.1712905