Araştırma Makalesi
BibTex RIS Kaynak Göster

Insecticide residue analyses in cucumbers sampled from Çanakkale open markets

Yıl 2020, , 449 - 460, 31.12.2020
https://doi.org/10.16970/entoted.767482

Öz

The aim of this study was to investigate four insecticide residues in cucumbers with the aid of QuEChERS 2007.1 method. For method verification assessment, pesticide-free cucumber matrix was spiked with 0.1, 1 and 10 times of MRL for each pesticide. The QuEChERS-LC-MS/MS analytical method revealed that the detection limits of the insecticides were below the MRLs and the overall recovery of method was 97.7%. These figures were within the SANTE recovery limits (60-140%) and the values specified for the repeatability (≤20%). Cucumbers were collected from six different stands (A-F) at Çanakkale open markets for 6 weeks between 23 November and 28 December 2018. Residues of each sampling time and each stand were assessed. Acetamiprid residue of 257g and 236 µg/kg were detected in week 5 from stand B and in week 2 from stand E, respectively. These values are close to MRL (300 µg/kg). Formetanate hydrochloride residue of the week 3 from stand F (36.3 µg/kg) was more than MRL of 10 µg/kg. Pirimiphos methyl and chlorpyrifos residues were not detected in cucumbers. Theoretical maximum daily intake assessment showed that there was no chronic exposure risk for these four pesticides through cucumber consumption.

Destekleyen Kurum

Canakkale Onsekiz Mart Universitesi BAP birimi

Proje Numarası

FYL-2019-2840

Teşekkür

This study was supported by Scientific Research Projects Department of Çanakkale Onsekiz Mart University (FYL-2019-2840), with the title of Master Thesis project “Determination of some pesticide residues in cucumber samples taken at different times from Çanakkale Cuma bazaar”. The authors are also grateful to Prof. Dr. Zeki Gökalp (Certified English Translator) for his critical reading and through syntactic corrections of the manuscript

Kaynakça

  • Abdel-Ghany, F. M., L. A. Hüseyin, F. N. El-Azaba, H. A. El-Khatib & W. M. Linscheid, 2016. Simultaneous determination of eight neonicotinoid insecticide residues and two primary metabolites in cucumbers and soil by liquid chromatography-tandem mass spectrometry coupled with QuEChERS. Journal of Chromatography B, 1031: 15-28.
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal AOAC International, 86 (2): 412-431.
  • Anonymous, 2002. Ministry of Agriculture and Rural Affairs, General Protection and Control Directorate, Monitoring of Food Additives - Residues and Contaminants - 2. Publication Book, Bursa-2002, 99 pp.
  • BKÜ, 2020. BKÜ veri tabanı, bazı aktif maddelerin kullanımının sonlandırılması. (Web page: https://bku.tarim.gov.tr/Duyuru/DuyuruDetay/55) (Date accessed: June 2020).
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: January 2019).
  • Cara, M., V. Vorpsi, F. Harizaj, J. Merkuri & V. Vladi, 2011. Degradation of the Insecticide Acetamiprid in Greenhouse Cucumbers and an Estimation of the Level of Residues. Journal of Environmental Protection and Ecology, 12 (1): 74-81.
  • Council Directive 90/642/EEC November, 1990. On the fixing of maximum levels for pesticide residues in and on fruit and vegetables. In Official Journal of the European Communities, (Vol. L350, p. 0071). Brussels: European Community.
  • EU, 2020. EU-Pesticides database. (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=911) (Date accessed: March 2020).
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. (Web page: http://www.eurachem.org) (Date accessed: April 2020).
  • GKGM, 2020. Bazı Bitki Koruma Ürünü aktif maddelerin kullanımdan kaldırılması. Gıda Kontrol Genel Müdürlüğü, 21.12.2019. (Web page: http://zehirsizsofralar.org/wp-content/uploads/2020/01/2019_12_21_Aktif-Maddelerin-Kullan%C4%B1mdan-Kald%C4%B1r%C4%B1lmas%C4%B1.pdf) (Date accessed: September 2020).
  • Gölge, Ö. & B. Kabak, 2015. Evaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes. Food Chemistry, 176: 319-332.
  • Hassanzadeh, N., A. Esmaili-Sari & N. Bahramifar, 2012. Dissipation of imidacloprid in greenhouse cucumbers at single and double dosages spraying. Journal of Agricultural Science and Technology, 14 (3): 557-564.
  • IRAC, 2020. Mode of Action Classification Scheme. Insecticide Resistance Action Committee (IRAC). Version 9.4. (Web page: https://irac-online.org/documents/moa-classification) (Date accessed: September 2020).
  • Islam, M. A., M. Z. Islam & M. K. Hossain, 2015. Residual analysis of selected pesticides in cucumber and spinach collected from local markets of Mymensingh Sadar. Progressive Agriculture, 26 (1): 38-44.
  • Kaya, T. & A. L. Tuna, 2019. İzmir ilindeki üç halk pazarından alınan meyve ve sebze örneklerindeki pestisit kalıntı miktarının araştırılması. Türkiye Tarımsal Araştırmalar Dergisi, 6 (1): 32-38.
  • Lehotay, S. J., K. Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to ımprove results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Leili, M., A. Pirmoghani, T. M. Samadi, R. Shokoohi, G. Roshanaei & A. Poormohammadi, 2016. Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iran Journal Public Health, 45 (11): 1481-1490.
  • Liang, Y., W. Wang, Y. Shen, Y. Liu & X. J. Liu, 2012. Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chemistry, 133 (3): 636-640.
  • Nasiri, A., M. Amirahmad, Z. Moousavi, S. Shoeibib, A. Khajeamirid & F. Kobarfarde, 2016. A multi residue GC-MS method for determination of 12 pesticides in cucumber. Iranian Journal of Pharmaceutical Research, 15 (4): 809-816.
  • Omeroglu, P. Y., D. Boyacioglu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (5): 1469-1480.
  • Oraman, Y., 2011. Consumer responses to pesticide residues in fruit and vegetables. Journal of Environmental Protection and Ecology, 12 (1): 82-88.
  • Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. Journal of Environmental Science and Health, Part B, 55 (1): 1-10.
  • PPDB, 2020. Pesticides properties data base. (Web page: https://sitem.herts.ac.uk/aeru/ footprint/es/atoz.htm) (Date accessed: March 2020).
  • SANTE, 2019. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed.SANTE/12682/2019. (Webpage:https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf) (Date accessed: September 2020).
  • Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
  • TÜİK, 2019. Türkiye İstatistiki Kurumu. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: March 2020).
  • TURKAK, 2019. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/turkaksite/docs/bilgilendirme_kilavuzlari/metodun_ge%c3%87erl%c4%b0_kilinmasi_ve_dogrulanmasi_icin_bilgilendirme_kilavuzu_20052019_1625.pdf) (Date accessed: March 2020).
  • Türköz-Bakırcı, G., D. B. Yaman-Acay, F. Bakırcı & S. Ötleş, 2014. Pesticide residues in fruits and vegetables from the Aegean region Turkey. Food Chemistry, 160: 379-392.
  • WHO, 1997. Guidelines for predicting dietary intake of pesticide residues. (Web page: https://www.who.int/foodsafety/publications/chem/en/pesticide_en.pdf?ua=1) (Date accessed: June 2020).
  • WHO, 2009. The WHO recommended classification of pesticides by hazard and guidelines to classification. (Web page: https://www.who.int/foodsafety/publications/classification-pesticides/en/) (Date accessed: May 2020).
  • Wu, M. & J. Hu, 2014. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS. Chemical Papers, 68 (10): 1368-1374.

Çanakkale açık pazarlarından örneklenen hıyarlarda insektisit kalıntı analizleri

Yıl 2020, , 449 - 460, 31.12.2020
https://doi.org/10.16970/entoted.767482

Öz

Bu çalışma hıyarlarda dört insektisit kalıntısını QuEChERS 2007.1 yöntemi ile belirlemek amacıyla yapılmıştır. Metot doğrulama değerlendirmesi için pestisit içermeyen hıyar örneği MRL değerlerinin 0.1, 1 ve 10 katı seviyelerinde her pestisit ile zenginleştirilmiştir (fortifikasyon). QuEChERS-LC-MS/MS analiz yöntemi ile insektisitlerin dedeksiyon limitleri MRL’lerin altında ve tüm metodun geri alımı %97.7 olarak bulunmuştur. Bu değerler SANTE geri alım limiti (%60-140) ve belirlenen tekrarlanabilirlik değerleri (≤20%) arasındadır. Hıyarlar 6 hafta boyunca Çanakkale açık pazarlarından altı farklı tezgâhtan (A-F) 23 Kasım-28 Aralık 2018 tarihleri arasında toplanmıştır. Her bir örnekleme zamanı ve her bir tezgâha ait örneklerde kalıntılar araştırılmıştır. Acetamiprid kalıntısı, 5. hafta B tezgahında ve 2. hafta E tezgahında sırasıyla 257 µg/kg ve 236 µg/kg olarak tespit edilmiştir. Bu değerler MRL‘ne (300 µg/kg) yakındır. Üçüncü hafta F tezgahında formetanate hidroklorür kalıntısı (36.3 µg/kg),10 µg/kg MRL değerinden daha fazla bulunmuştur. Hıyarlarda pirimiphos methyl ve chlorpyrifos kalıntısı bulunmamıştır. Teorik maksimum günlük alım değerlendirmesi hıyar tüketiminde bu 4 pestisitin kronik maruziyet riski oluşturmadığını göstermiştir.

Proje Numarası

FYL-2019-2840

Kaynakça

  • Abdel-Ghany, F. M., L. A. Hüseyin, F. N. El-Azaba, H. A. El-Khatib & W. M. Linscheid, 2016. Simultaneous determination of eight neonicotinoid insecticide residues and two primary metabolites in cucumbers and soil by liquid chromatography-tandem mass spectrometry coupled with QuEChERS. Journal of Chromatography B, 1031: 15-28.
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal AOAC International, 86 (2): 412-431.
  • Anonymous, 2002. Ministry of Agriculture and Rural Affairs, General Protection and Control Directorate, Monitoring of Food Additives - Residues and Contaminants - 2. Publication Book, Bursa-2002, 99 pp.
  • BKÜ, 2020. BKÜ veri tabanı, bazı aktif maddelerin kullanımının sonlandırılması. (Web page: https://bku.tarim.gov.tr/Duyuru/DuyuruDetay/55) (Date accessed: June 2020).
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: January 2019).
  • Cara, M., V. Vorpsi, F. Harizaj, J. Merkuri & V. Vladi, 2011. Degradation of the Insecticide Acetamiprid in Greenhouse Cucumbers and an Estimation of the Level of Residues. Journal of Environmental Protection and Ecology, 12 (1): 74-81.
  • Council Directive 90/642/EEC November, 1990. On the fixing of maximum levels for pesticide residues in and on fruit and vegetables. In Official Journal of the European Communities, (Vol. L350, p. 0071). Brussels: European Community.
  • EU, 2020. EU-Pesticides database. (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=911) (Date accessed: March 2020).
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. (Web page: http://www.eurachem.org) (Date accessed: April 2020).
  • GKGM, 2020. Bazı Bitki Koruma Ürünü aktif maddelerin kullanımdan kaldırılması. Gıda Kontrol Genel Müdürlüğü, 21.12.2019. (Web page: http://zehirsizsofralar.org/wp-content/uploads/2020/01/2019_12_21_Aktif-Maddelerin-Kullan%C4%B1mdan-Kald%C4%B1r%C4%B1lmas%C4%B1.pdf) (Date accessed: September 2020).
  • Gölge, Ö. & B. Kabak, 2015. Evaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes. Food Chemistry, 176: 319-332.
  • Hassanzadeh, N., A. Esmaili-Sari & N. Bahramifar, 2012. Dissipation of imidacloprid in greenhouse cucumbers at single and double dosages spraying. Journal of Agricultural Science and Technology, 14 (3): 557-564.
  • IRAC, 2020. Mode of Action Classification Scheme. Insecticide Resistance Action Committee (IRAC). Version 9.4. (Web page: https://irac-online.org/documents/moa-classification) (Date accessed: September 2020).
  • Islam, M. A., M. Z. Islam & M. K. Hossain, 2015. Residual analysis of selected pesticides in cucumber and spinach collected from local markets of Mymensingh Sadar. Progressive Agriculture, 26 (1): 38-44.
  • Kaya, T. & A. L. Tuna, 2019. İzmir ilindeki üç halk pazarından alınan meyve ve sebze örneklerindeki pestisit kalıntı miktarının araştırılması. Türkiye Tarımsal Araştırmalar Dergisi, 6 (1): 32-38.
  • Lehotay, S. J., K. Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to ımprove results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Leili, M., A. Pirmoghani, T. M. Samadi, R. Shokoohi, G. Roshanaei & A. Poormohammadi, 2016. Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iran Journal Public Health, 45 (11): 1481-1490.
  • Liang, Y., W. Wang, Y. Shen, Y. Liu & X. J. Liu, 2012. Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chemistry, 133 (3): 636-640.
  • Nasiri, A., M. Amirahmad, Z. Moousavi, S. Shoeibib, A. Khajeamirid & F. Kobarfarde, 2016. A multi residue GC-MS method for determination of 12 pesticides in cucumber. Iranian Journal of Pharmaceutical Research, 15 (4): 809-816.
  • Omeroglu, P. Y., D. Boyacioglu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (5): 1469-1480.
  • Oraman, Y., 2011. Consumer responses to pesticide residues in fruit and vegetables. Journal of Environmental Protection and Ecology, 12 (1): 82-88.
  • Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. Journal of Environmental Science and Health, Part B, 55 (1): 1-10.
  • PPDB, 2020. Pesticides properties data base. (Web page: https://sitem.herts.ac.uk/aeru/ footprint/es/atoz.htm) (Date accessed: March 2020).
  • SANTE, 2019. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed.SANTE/12682/2019. (Webpage:https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf) (Date accessed: September 2020).
  • Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
  • TÜİK, 2019. Türkiye İstatistiki Kurumu. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: March 2020).
  • TURKAK, 2019. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/turkaksite/docs/bilgilendirme_kilavuzlari/metodun_ge%c3%87erl%c4%b0_kilinmasi_ve_dogrulanmasi_icin_bilgilendirme_kilavuzu_20052019_1625.pdf) (Date accessed: March 2020).
  • Türköz-Bakırcı, G., D. B. Yaman-Acay, F. Bakırcı & S. Ötleş, 2014. Pesticide residues in fruits and vegetables from the Aegean region Turkey. Food Chemistry, 160: 379-392.
  • WHO, 1997. Guidelines for predicting dietary intake of pesticide residues. (Web page: https://www.who.int/foodsafety/publications/chem/en/pesticide_en.pdf?ua=1) (Date accessed: June 2020).
  • WHO, 2009. The WHO recommended classification of pesticides by hazard and guidelines to classification. (Web page: https://www.who.int/foodsafety/publications/classification-pesticides/en/) (Date accessed: May 2020).
  • Wu, M. & J. Hu, 2014. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS. Chemical Papers, 68 (10): 1368-1374.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Hayriye Çatak Bu kişi benim 0000-0003-4678-6814

Osman Tiryaki 0000-0002-7509-8423

Proje Numarası FYL-2019-2840
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 10 Temmuz 2020
Kabul Tarihi 26 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Çatak, H., & Tiryaki, O. (2020). Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44(4), 449-460. https://doi.org/10.16970/entoted.767482
AMA Çatak H, Tiryaki O. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. TED. Aralık 2020;44(4):449-460. doi:10.16970/entoted.767482
Chicago Çatak, Hayriye, ve Osman Tiryaki. “Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets”. Turkish Journal of Entomology 44, sy. 4 (Aralık 2020): 449-60. https://doi.org/10.16970/entoted.767482.
EndNote Çatak H, Tiryaki O (01 Aralık 2020) Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology 44 4 449–460.
IEEE H. Çatak ve O. Tiryaki, “Insecticide residue analyses in cucumbers sampled from Çanakkale open markets”, TED, c. 44, sy. 4, ss. 449–460, 2020, doi: 10.16970/entoted.767482.
ISNAD Çatak, Hayriye - Tiryaki, Osman. “Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets”. Turkish Journal of Entomology 44/4 (Aralık 2020), 449-460. https://doi.org/10.16970/entoted.767482.
JAMA Çatak H, Tiryaki O. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. TED. 2020;44:449–460.
MLA Çatak, Hayriye ve Osman Tiryaki. “Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets”. Turkish Journal of Entomology, c. 44, sy. 4, 2020, ss. 449-60, doi:10.16970/entoted.767482.
Vancouver Çatak H, Tiryaki O. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. TED. 2020;44(4):449-60.

Cited By