Araştırma Makalesi
BibTex RIS Kaynak Göster

Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey

Yıl 2021, , 499 - 510, 15.12.2021
https://doi.org/10.16970/entoted.989659

Öz

Anopheles maculipennis Meigen, 1818 (Diptera: Culicidae) complex was discovered as the first sibling species complex among mosquito species and identified as a highly important malaria vector in the Middle East and Europe. Anopheles maculipennis s.s. is the nominotypical member species of the complex, and widely spread across the whole of Europe. Body size and shape are the most important characters of organisms and is related to numerous variables. Biological size and shape may be affected by altitude and altitudinal differences. In this study, the variation in wing size and shape of An. maculipennis s.s. populations collected from four sampling stations in Iğdır Province (Mürşitali, Sürmeli, Yukarıçıyrıklı and Zülfikarköy) and two sampling stations in Kars Province (Kötek and Kozlu) at different altitudes and in different habitats from northeastern Turkey in 2019 were investigated. It was assumed that altitude and the environmental differences related with altitude may affect the wing (body) size or shape of An. maculipennis s.s. This is the first comparative geometric morphometric study of An. maculipennis s.s. populations in Turkey and the results indicate size and shape differences among some populations. While centroid size did not show a linear association with altitude, samples from the highest altitude population had larger wings than the other populations.

Teşekkür

I thank Dr. Hilal Bedir for her valuable support during field studies.

Kaynakça

  • Aboagye-Antwi, F. & F. Tripet, 2010. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malaria Journal, 9: 225 (11 pp).
  • Ayala, D., H. Caro-Riaño, J. P. Dujardin, N. Rahola, F. Simard & D. Fontenille, 2011. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infection, Genetics and Evolution, 11 (5): 940-947.
  • Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bulletin of Entomological Research, 49 (1): 157-163.
  • Barber, M. A. & J. B. Rice, 1935. Malaria studies in Greece: the malaria infection rate in nature and in the laboratory of certain species of Anopheles of East Macedonia. Annals of Tropical Medicine and Parasitology, 29: 329-348.
  • Becker, N., D. Petric, M. Zgomba, C. Boase, M. Madon, C. Dahl & A. Kaiser, 2010. Mosquitoes and Their Control. Springer, Heidelberg, Dordrecht, New York, 577 pp.
  • Belen, A., B. Alten & A. M. Aytekin, 2004. Altitudinal variation in morphometric and molecular characteristics of Phlebotomus papatasi populations. Medical and Veterinary Entomology.18 (4): 343-350.
  • Bennett, K. E., K. E. Olson, M. Muñoz, I. Fernandez-Salas, J. A. Farfan-Ale, S. Higgs & C. William, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. American Journal of Tropical Medicine and Hygiene, 67 (1): 85-92.
  • Blanckenhorn, W. U. & M. Demont, 2004. Bergmann and Converse Bergmann Latitudinal Clines in Arthropods: Two Ends of a Continuum? Integrative and Comparative Biology, 44 (6): 413-424.
  • Bookstein, F. L., 2007. Comment on “Maximum likelihood Procrustes superpositions instead of least-squares”. Posting at morphmet. mailing list www.morphometric.org.
  • Calboli, F. C. F., G. W. Gilchrist & L. Partridge, 2003. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution, 57 (3): 566-573.
  • Chaiphongpachara, T. & S. Laojun, 2020. Wing morphometric variability of the malaria vector Anopheles (Cellia) epiroticus Linton et Harbach (Diptera: Culicidae) for the duration of the rainy season in coastal areas of Samut Songkhram, Thailand. Folia Parasitologica (Praha), 67: 007 (7 pp).
  • Christiansen-Jucht, C., P. E. Parham, A. Saddler, J. C. Koella & M-G. Basáñez, 2014. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasite and Vectors, 7: 489 (10 pp).
  • Cohuet, A., C. Harris, V. Robert V& D. Fontenille, 2010. Evolutionary forces on Anopheles: what makes a malaria vector? Trends in Parasitology, 26 (3): 130-136.
  • Cowley, D. E. & W. Atchley, 1990. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. The American Naturalist, 135 (2): 242-268.
  • Demirci, B., Y. Lee, G. C. Lanzaro & B. Alten, 2012. Altitudinal genetic and morphometric variation among populations of Culex theileri Theobald (Diptera: Culicidae) from northeastern Turkey. Journal of Vector Ecology, 37 (1): 197-209.
  • Dudley, R., 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton, 261 pp.
  • Dujardin, J. P., 2011. "Modern Morphometrics of Medically Important Insects. 473-501". In: Genetics and Evolution of Infectious Disease (Ed. M. Tibayrenc). Elsevier, Amsterdam, The Netherlands, 749 pp.
  • Ergönül, O., N. Tülek, I. Kayı, H. Irmak, O. Erdem & M. Dara, 2020. Profiling infectious diseases in Turkey after the influx of 3.5 million Syrian refugees. Clinical Microbiology and Infection, 26 (3): 307-312.
  • Falleroni, D., 1926. Fauna anofelica italiana e suo ‘‘habitat’’ (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv Malariol, 5 (5-6): 553-559.
  • Fusco, G. & A. Minelli. 2010. Phenotypic plasticity in development and evolution: facts and concepts. Introduction. Philosophical Transactions of the Royal Society B: Biological, 365 (1540): 547-556.
  • Garzón, M. J. & N. Schweigmann, 2018. Wing morphometrics of Aedes (Ochlerotatus) albifasciatus (Macquart, 1838) (Diptera: Culicidae) from different climatic regions of Argentina. Parasite and Vectors, 11: 303 (10 pp).
  • Gimnig, J. E., M. Ombok, S. Otieno, M. G. Kaufman, J. M. Vulule & E. D. Walker, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. Journal of Medical Entomology. 39 (1): 162-172.
  • Goddard, L. B, A. E. Roth, W. K. Reisen & T. W. Scott, 2002. Vector competence of California mosquitoes for West Nile virus. Emerging Infectious Diseases journal, 8 (12): 1385-1391.
  • Gómez, G., E. J. Márquez, L. A. Gutiérrez, J. Conn & M. Correa, 2014. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Tropica, 135 (July): 75-85.
  • Grodnitsky, D. L., 1999. Form and Function of Insect Wings. The Johns Hopkins University Press. Baltimore, MD, 257 pp.
  • Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science, 287 (5451): 308-309.
  • James, A. C., R. B. R. Azevedo & L. Partridge, 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics, 146 (3): 881-890.
  • Jetten, T. H. & W. Takken W, 1994. Anophelism without Malaria in Europe-A Review of the Ecology and Distribution of the Genus Anopheles in Europe. Agricultural University Wageningen, The Netherlands Wageningen Agricultural University Papers, 69 pp.
  • Johansson, F., M. Soderquist & F. Bokma, 2009. Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97 (2): 362-372.
  • Kasap, M. & H. Kasap, 1983. Laboratory colonization of Anopheles sacharovi, the principal vector of human malaria in Turkey. Mosquito News, 43 (4): 489-499.
  • Klingenberg, C. P., 2011. Morphoj: An Integrated Software Package for Geometric Morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Kuclu, O., A. Aldemir & B. Demirci, 2011. Altitudinal variation in the morphometric characteristics of Aedes vexans Meigen from northeastern Turkey. Journal of Vector Ecology, 36 (1): 30-41.
  • Lyimo, E. O, W. Takken & J. C. Koella, 1992. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomologia Experimentalis et Applicata, 63 (3): 265-271.
  • Manoukis, N. C., M. B. Toure, I. Sissoko, S. Doumbia, S. F. Traore, M. A. Diuk-Wasser & C. E. Taylor, 2006. Is vector body size the key to reduced malaria transmission in the irrigated region of Niono, Mali?. Journal of Medical Entomology, 43 (5): 820-827.
  • Moller-Jacobs, L. L., C. C. Murdock & M. B. Thomas, 2014. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasite and Vectors, 7: 593 (12 pp).
  • Morales Vargas, R. E., P. Ya-Umphan, N. Phumala-Morales & J. P. Komalamisra Ndujardin, 2010. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infection, Genetics and Evolution, 10 (4): 580-585.
  • Motoki, M. T, L. Suesdek, E. S. Bergo & M. A. M Sallum, 2012. Wing geometry of Anopheles darlingi Root (Diptera: Culicidae) in five major Brazilian ecoregions. Infection, Genetics and Evolution, 12 (6): 1246-1252.
  • Nasci, R. S. & C.J. Mitchell, 1994. Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera: Culicidae) to infection with Ross River virus. Journal of Medical Entomology, 31 (1):123-126.
  • Noden, B. H., P. A. O’Neal, J. E. Fader & S. A. Juliano, 2016. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females. Ecological Entomology, 41 (2):192-200.
  • Novikov, Y. M. & O. V. Vaulin, 2014. Expansion of Anopheles maculipennis s.s. (Diptera: Culicidae) to northeastern Europe and northwestern Asia: Causes and Consequences. Parasite and Vectors, 7: 389 (10 pp).
  • Parrish, D. W., 1959. The mosquitoes of Turkey. Mosquito News, 19 (4): 264-266.
  • Phanitchat, T., C. Apiwathnasorn, S. Sungvornyothin, Y. Samung, S. Dujardin & J. P. Dujardin, 2019. Geometric morphometric analysis of the effect of temperature on wing size and shape in Aedes albopictus. Medical and Veterinary Entomology, 33 (4): 476-484.
  • Postiglione, M., S. Tabanli & C. D. Ramsdale, 1973. The Anopheles of Turkey. Rivista di Parassitologia, 34 (2): 127-159.
  • Proft, J., A. M. Maier & H. Kampen, 1999. Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Parasitology Research, 85 (10): 837-843.
  • Prudhomme, J., E. Velo, S. Bino, P. Kadriaj, K. Mersini, F. Gunay & B. Alten, 2019. Altitudinal variations in wing morphology of Aedes albopictus (Diptera, Culicidae) in Albania, the region where it was first recorded in Europe. Variations phénotypiques des ailes d’Aedes albopictus (Diptera, Culicidae) en fonction de l’altitude en Albanie, la région où il a été signalé pour la première fois en Europe. Parasite, 26: 55 (10 pp).
  • Pulkkinen, K. & D. Ebert, 2004. Host starvation decreases parasite load and mean host size in experimental populations. Ecology, 85 (3): 823-833.
  • Ramsdale, C. D., B. Alten, S. S. Caglar & N. Ozer, 2001. A revised annotated checklist of mosquitoes (Diptera: Culicidae) of Turkey. European Mosquito Bulletin, 9: 18-27.
  • Ramsdale, C. & K. Snow, 2000. Distribution of the genus Anopheles in Europe. European Mosquito Bulletin, 7: 1-26.
  • Reiskind, M. H. & L. Lounibos, 2009. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology, 23 (1): 62-68.
  • Renshaw, M., M. W. Service & M. H. Birley, 1994. Size variation and reproductive success in the mosquito Aedes cantans. Medical and Veterinary Entomology, 8 (2): 179-186.
  • Rohlf, F. J., 2018. TpsDig264, version 2.31. Department of Ecology and Evolution, State University of New York, (Web page: www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Rohlf, F. J., 2019a. Tps Relw32, version 1.70. Department of Ecology and Evolution, State University of New York, (Web page: http://www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Rohlf, F. J., 2019b. TpsUtil64, version 1.79. Department of Ecology and Evolution, State University of New York, (Web page: http://www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Schaffner, F., G. Angel, B. Geoffroy, J. P. Hervy, A. Rhaiem & J. Brunhes, 2001. The Mosquitoes of Europe. An identification and training programme. Montpellier: IRD Editions & EID Mediterranean.
  • Schneider, J. R., A. Mori, J. Romero-Severson, D. D. Chadee & D. W. Severson, 2007. Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations. Medical and Veterinary Entomology, 4 (21): 370-376.
  • Shapiro, L. L, C. C. Murdock, G. R. Jacobs, R. J. Thomas & M. B. Thomas, 2016. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proceedings of the Royal Society B: Biological Sciences, 283: 20160298 (8 pp).
  • Simsek, F. M., C. Ulger, M. M. Akiner, S. S. Tuncay, F. Kiremit & F. Bardakci, 2011. Molecular identification and distribution of Anopheles maculipennis complex in the Mediterranean region of Turkey. Biochemical Systematics and Ecology, 39 (4-6): 258-265.
  • Stephens, C. R. & S. A. Juliano, 2012. Wing shape as an indicator of larval rearing conditions for Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 49 (4): 927-938.
  • Strickman, D. & P. Kittayapong, 2003. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. American Journal of Tropical Medicine and Hygiene, 68 (2): 209-217.
  • Sumruayphol, S., B. Chittsamart, P. Polseela, P. Sriwichai, Y. Samung, C. J. Apiwathnasorn & J. P. Dujardin, 2017. Wing geometry of Phlebotomus stantoni and Sergentomyia hodgsoni from different geographical locations in Thailand. Comptes Rendus Biologies, 340 (1): 37-46.
  • Takken, W., M. J. Klowden & G. M. Chambers, 1998. Effect of body size on host seekingandbloodmeal utilization in Anopheles gambiae sensus tricto (Diptera: Culicidae): the disadvantage of being small. Journal of Medical Entomology, 35 (5): 639-645.
  • van Thiel, P. H., 1927. Sur l’origine des variations de taille de l’Anopheles maculipennis dans les Payes-Bas. Le Bulletin de la Société de Pathologie Exotique, 20: 366-390.
  • Vantaux, A., T. Lefèvre, A. Cohuet, K. R. Dabiré, B. Roche & O. Roux, 2016. Larval nutritional stress affects vector life history traits and human malaria transmission. Scientific Reports, 6: 367-378.
  • Vicente, J. L., C. A. Sousa, B. Alten, S. S. Caglar, E. Falcutá, J. M. Latorre, C. Toty, H. Barré, B. Demirci, M. Di Luca, L. Toma, R. Alves, P. Salgueiro, T. L. Silva, M. D. Bargues, S. Mas-Coma, D. Boccolini, R. Romi, G. Nicolescu, V. E. do Rosário, N. Ozer, D. Fontenille & J. Pinto, 2011. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malaria Journal, 10): 5 (9 pp).
  • World Malaria Report, 2018. World Health Organization, Geneva, 545 pp.
  • Yurttas, H. & B. Alten, 2006. Geographic differentiation of life table attributes among Anopheles sacharovi (Diptera: Culicidae) populations in Turkey. Journal of Vector Ecology, 31 (2): 275-284.
  • Zelditch, M. L., H. D. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists. Elsevier Academic Press. London, 456 pp.
  • Zeller, M. & J. C. Koella, 2016. Effects of food variability on growth and reproduction of Aedes aegypti. Ecology and Evolution, 6 (2): 552-559.

Türkiye’nin Kuzeydoğu Anadolu Bölgesi’ndeki Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) türünün kanat morfolojisindeki büyüklük ve şekil farklılıkları

Yıl 2021, , 499 - 510, 15.12.2021
https://doi.org/10.16970/entoted.989659

Öz

Anopheles maculipennis kompleksi sivrisinek türleri arasında ilk ikiz tür kompleksi olarak keşfedilmiş ve Orta Doğu ve Avrupa’da çok önemli sıtma vektörü olarak tanımlanmıştır. Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) kompleksin nominotipik üye türü olarak bilinmektedir ve tüm Avrupa’da yaygın bir şekilde bulunmaktadır. Vücut büyüklüğü ve şekli organizmaların en önemli özelliklerindendir ve çok sayıda değişkenle ilişkilidirler. Vücut büyüklüğü ve şekli yükseklikten ve yüksekliğe bağlı farklılıklardan etkilenebilir. Bu çalışmada Türkiye’nin Kuzeydoğu Anadolu Bölgesi’nde farklı yükseklik ve habitatlarda bulunan ve 4 tanesi Iğdır İli (Mürşitali, Zülfikarköy, Sürmeli, Yukarıçıyrıklı) ve 2 tanesi ise Kars iline (Kötek ve Kozlu) ait farklı örnekleme istasyonlarından 2019 yılında toplanan An. maculipennis s.s. popülasyonlarının kanat büyüklük ve şekil varyasyonları araştırılmıştır. Yükseklik ve yüksekliğe bağlı çevresel farklılıkların An. maculipennis s.s.’in kanat (vücut) büyüklüğü veya şeklini etkileyebileceği varsayılmıştır. Bu çalışma ile Türkiye’de bulunan An. maculipennis s.s. türleri geometrik morfometri yöntemi ile ilk kez değerlendirilmiştir ve sonuçlar bazı popülasyonlar arasında bazı büyüklük ve şekil farklılıklarına işaret etmektedir. Geometrik merkez her ne kadar yükseklikle doğrusal bir ilişki göstermese de en yüksek rakımdan toplanan popülasyon diğer popülasyonlara göre göreceli olarak daha büyük kanatlara sahiptir.

Kaynakça

  • Aboagye-Antwi, F. & F. Tripet, 2010. Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto. Malaria Journal, 9: 225 (11 pp).
  • Ayala, D., H. Caro-Riaño, J. P. Dujardin, N. Rahola, F. Simard & D. Fontenille, 2011. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infection, Genetics and Evolution, 11 (5): 940-947.
  • Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bulletin of Entomological Research, 49 (1): 157-163.
  • Barber, M. A. & J. B. Rice, 1935. Malaria studies in Greece: the malaria infection rate in nature and in the laboratory of certain species of Anopheles of East Macedonia. Annals of Tropical Medicine and Parasitology, 29: 329-348.
  • Becker, N., D. Petric, M. Zgomba, C. Boase, M. Madon, C. Dahl & A. Kaiser, 2010. Mosquitoes and Their Control. Springer, Heidelberg, Dordrecht, New York, 577 pp.
  • Belen, A., B. Alten & A. M. Aytekin, 2004. Altitudinal variation in morphometric and molecular characteristics of Phlebotomus papatasi populations. Medical and Veterinary Entomology.18 (4): 343-350.
  • Bennett, K. E., K. E. Olson, M. Muñoz, I. Fernandez-Salas, J. A. Farfan-Ale, S. Higgs & C. William, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. American Journal of Tropical Medicine and Hygiene, 67 (1): 85-92.
  • Blanckenhorn, W. U. & M. Demont, 2004. Bergmann and Converse Bergmann Latitudinal Clines in Arthropods: Two Ends of a Continuum? Integrative and Comparative Biology, 44 (6): 413-424.
  • Bookstein, F. L., 2007. Comment on “Maximum likelihood Procrustes superpositions instead of least-squares”. Posting at morphmet. mailing list www.morphometric.org.
  • Calboli, F. C. F., G. W. Gilchrist & L. Partridge, 2003. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution, 57 (3): 566-573.
  • Chaiphongpachara, T. & S. Laojun, 2020. Wing morphometric variability of the malaria vector Anopheles (Cellia) epiroticus Linton et Harbach (Diptera: Culicidae) for the duration of the rainy season in coastal areas of Samut Songkhram, Thailand. Folia Parasitologica (Praha), 67: 007 (7 pp).
  • Christiansen-Jucht, C., P. E. Parham, A. Saddler, J. C. Koella & M-G. Basáñez, 2014. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasite and Vectors, 7: 489 (10 pp).
  • Cohuet, A., C. Harris, V. Robert V& D. Fontenille, 2010. Evolutionary forces on Anopheles: what makes a malaria vector? Trends in Parasitology, 26 (3): 130-136.
  • Cowley, D. E. & W. Atchley, 1990. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. The American Naturalist, 135 (2): 242-268.
  • Demirci, B., Y. Lee, G. C. Lanzaro & B. Alten, 2012. Altitudinal genetic and morphometric variation among populations of Culex theileri Theobald (Diptera: Culicidae) from northeastern Turkey. Journal of Vector Ecology, 37 (1): 197-209.
  • Dudley, R., 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton, 261 pp.
  • Dujardin, J. P., 2011. "Modern Morphometrics of Medically Important Insects. 473-501". In: Genetics and Evolution of Infectious Disease (Ed. M. Tibayrenc). Elsevier, Amsterdam, The Netherlands, 749 pp.
  • Ergönül, O., N. Tülek, I. Kayı, H. Irmak, O. Erdem & M. Dara, 2020. Profiling infectious diseases in Turkey after the influx of 3.5 million Syrian refugees. Clinical Microbiology and Infection, 26 (3): 307-312.
  • Falleroni, D., 1926. Fauna anofelica italiana e suo ‘‘habitat’’ (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv Malariol, 5 (5-6): 553-559.
  • Fusco, G. & A. Minelli. 2010. Phenotypic plasticity in development and evolution: facts and concepts. Introduction. Philosophical Transactions of the Royal Society B: Biological, 365 (1540): 547-556.
  • Garzón, M. J. & N. Schweigmann, 2018. Wing morphometrics of Aedes (Ochlerotatus) albifasciatus (Macquart, 1838) (Diptera: Culicidae) from different climatic regions of Argentina. Parasite and Vectors, 11: 303 (10 pp).
  • Gimnig, J. E., M. Ombok, S. Otieno, M. G. Kaufman, J. M. Vulule & E. D. Walker, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. Journal of Medical Entomology. 39 (1): 162-172.
  • Goddard, L. B, A. E. Roth, W. K. Reisen & T. W. Scott, 2002. Vector competence of California mosquitoes for West Nile virus. Emerging Infectious Diseases journal, 8 (12): 1385-1391.
  • Gómez, G., E. J. Márquez, L. A. Gutiérrez, J. Conn & M. Correa, 2014. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Tropica, 135 (July): 75-85.
  • Grodnitsky, D. L., 1999. Form and Function of Insect Wings. The Johns Hopkins University Press. Baltimore, MD, 257 pp.
  • Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science, 287 (5451): 308-309.
  • James, A. C., R. B. R. Azevedo & L. Partridge, 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics, 146 (3): 881-890.
  • Jetten, T. H. & W. Takken W, 1994. Anophelism without Malaria in Europe-A Review of the Ecology and Distribution of the Genus Anopheles in Europe. Agricultural University Wageningen, The Netherlands Wageningen Agricultural University Papers, 69 pp.
  • Johansson, F., M. Soderquist & F. Bokma, 2009. Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97 (2): 362-372.
  • Kasap, M. & H. Kasap, 1983. Laboratory colonization of Anopheles sacharovi, the principal vector of human malaria in Turkey. Mosquito News, 43 (4): 489-499.
  • Klingenberg, C. P., 2011. Morphoj: An Integrated Software Package for Geometric Morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Kuclu, O., A. Aldemir & B. Demirci, 2011. Altitudinal variation in the morphometric characteristics of Aedes vexans Meigen from northeastern Turkey. Journal of Vector Ecology, 36 (1): 30-41.
  • Lyimo, E. O, W. Takken & J. C. Koella, 1992. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomologia Experimentalis et Applicata, 63 (3): 265-271.
  • Manoukis, N. C., M. B. Toure, I. Sissoko, S. Doumbia, S. F. Traore, M. A. Diuk-Wasser & C. E. Taylor, 2006. Is vector body size the key to reduced malaria transmission in the irrigated region of Niono, Mali?. Journal of Medical Entomology, 43 (5): 820-827.
  • Moller-Jacobs, L. L., C. C. Murdock & M. B. Thomas, 2014. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasite and Vectors, 7: 593 (12 pp).
  • Morales Vargas, R. E., P. Ya-Umphan, N. Phumala-Morales & J. P. Komalamisra Ndujardin, 2010. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infection, Genetics and Evolution, 10 (4): 580-585.
  • Motoki, M. T, L. Suesdek, E. S. Bergo & M. A. M Sallum, 2012. Wing geometry of Anopheles darlingi Root (Diptera: Culicidae) in five major Brazilian ecoregions. Infection, Genetics and Evolution, 12 (6): 1246-1252.
  • Nasci, R. S. & C.J. Mitchell, 1994. Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera: Culicidae) to infection with Ross River virus. Journal of Medical Entomology, 31 (1):123-126.
  • Noden, B. H., P. A. O’Neal, J. E. Fader & S. A. Juliano, 2016. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females. Ecological Entomology, 41 (2):192-200.
  • Novikov, Y. M. & O. V. Vaulin, 2014. Expansion of Anopheles maculipennis s.s. (Diptera: Culicidae) to northeastern Europe and northwestern Asia: Causes and Consequences. Parasite and Vectors, 7: 389 (10 pp).
  • Parrish, D. W., 1959. The mosquitoes of Turkey. Mosquito News, 19 (4): 264-266.
  • Phanitchat, T., C. Apiwathnasorn, S. Sungvornyothin, Y. Samung, S. Dujardin & J. P. Dujardin, 2019. Geometric morphometric analysis of the effect of temperature on wing size and shape in Aedes albopictus. Medical and Veterinary Entomology, 33 (4): 476-484.
  • Postiglione, M., S. Tabanli & C. D. Ramsdale, 1973. The Anopheles of Turkey. Rivista di Parassitologia, 34 (2): 127-159.
  • Proft, J., A. M. Maier & H. Kampen, 1999. Identification of six sibling species of the Anopheles maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Parasitology Research, 85 (10): 837-843.
  • Prudhomme, J., E. Velo, S. Bino, P. Kadriaj, K. Mersini, F. Gunay & B. Alten, 2019. Altitudinal variations in wing morphology of Aedes albopictus (Diptera, Culicidae) in Albania, the region where it was first recorded in Europe. Variations phénotypiques des ailes d’Aedes albopictus (Diptera, Culicidae) en fonction de l’altitude en Albanie, la région où il a été signalé pour la première fois en Europe. Parasite, 26: 55 (10 pp).
  • Pulkkinen, K. & D. Ebert, 2004. Host starvation decreases parasite load and mean host size in experimental populations. Ecology, 85 (3): 823-833.
  • Ramsdale, C. D., B. Alten, S. S. Caglar & N. Ozer, 2001. A revised annotated checklist of mosquitoes (Diptera: Culicidae) of Turkey. European Mosquito Bulletin, 9: 18-27.
  • Ramsdale, C. & K. Snow, 2000. Distribution of the genus Anopheles in Europe. European Mosquito Bulletin, 7: 1-26.
  • Reiskind, M. H. & L. Lounibos, 2009. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology, 23 (1): 62-68.
  • Renshaw, M., M. W. Service & M. H. Birley, 1994. Size variation and reproductive success in the mosquito Aedes cantans. Medical and Veterinary Entomology, 8 (2): 179-186.
  • Rohlf, F. J., 2018. TpsDig264, version 2.31. Department of Ecology and Evolution, State University of New York, (Web page: www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Rohlf, F. J., 2019a. Tps Relw32, version 1.70. Department of Ecology and Evolution, State University of New York, (Web page: http://www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Rohlf, F. J., 2019b. TpsUtil64, version 1.79. Department of Ecology and Evolution, State University of New York, (Web page: http://www.sbmorphometrics.org) (Date accessed: June, 2020).
  • Schaffner, F., G. Angel, B. Geoffroy, J. P. Hervy, A. Rhaiem & J. Brunhes, 2001. The Mosquitoes of Europe. An identification and training programme. Montpellier: IRD Editions & EID Mediterranean.
  • Schneider, J. R., A. Mori, J. Romero-Severson, D. D. Chadee & D. W. Severson, 2007. Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations. Medical and Veterinary Entomology, 4 (21): 370-376.
  • Shapiro, L. L, C. C. Murdock, G. R. Jacobs, R. J. Thomas & M. B. Thomas, 2016. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proceedings of the Royal Society B: Biological Sciences, 283: 20160298 (8 pp).
  • Simsek, F. M., C. Ulger, M. M. Akiner, S. S. Tuncay, F. Kiremit & F. Bardakci, 2011. Molecular identification and distribution of Anopheles maculipennis complex in the Mediterranean region of Turkey. Biochemical Systematics and Ecology, 39 (4-6): 258-265.
  • Stephens, C. R. & S. A. Juliano, 2012. Wing shape as an indicator of larval rearing conditions for Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 49 (4): 927-938.
  • Strickman, D. & P. Kittayapong, 2003. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. American Journal of Tropical Medicine and Hygiene, 68 (2): 209-217.
  • Sumruayphol, S., B. Chittsamart, P. Polseela, P. Sriwichai, Y. Samung, C. J. Apiwathnasorn & J. P. Dujardin, 2017. Wing geometry of Phlebotomus stantoni and Sergentomyia hodgsoni from different geographical locations in Thailand. Comptes Rendus Biologies, 340 (1): 37-46.
  • Takken, W., M. J. Klowden & G. M. Chambers, 1998. Effect of body size on host seekingandbloodmeal utilization in Anopheles gambiae sensus tricto (Diptera: Culicidae): the disadvantage of being small. Journal of Medical Entomology, 35 (5): 639-645.
  • van Thiel, P. H., 1927. Sur l’origine des variations de taille de l’Anopheles maculipennis dans les Payes-Bas. Le Bulletin de la Société de Pathologie Exotique, 20: 366-390.
  • Vantaux, A., T. Lefèvre, A. Cohuet, K. R. Dabiré, B. Roche & O. Roux, 2016. Larval nutritional stress affects vector life history traits and human malaria transmission. Scientific Reports, 6: 367-378.
  • Vicente, J. L., C. A. Sousa, B. Alten, S. S. Caglar, E. Falcutá, J. M. Latorre, C. Toty, H. Barré, B. Demirci, M. Di Luca, L. Toma, R. Alves, P. Salgueiro, T. L. Silva, M. D. Bargues, S. Mas-Coma, D. Boccolini, R. Romi, G. Nicolescu, V. E. do Rosário, N. Ozer, D. Fontenille & J. Pinto, 2011. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe. Malaria Journal, 10): 5 (9 pp).
  • World Malaria Report, 2018. World Health Organization, Geneva, 545 pp.
  • Yurttas, H. & B. Alten, 2006. Geographic differentiation of life table attributes among Anopheles sacharovi (Diptera: Culicidae) populations in Turkey. Journal of Vector Ecology, 31 (2): 275-284.
  • Zelditch, M. L., H. D. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists. Elsevier Academic Press. London, 456 pp.
  • Zeller, M. & J. C. Koella, 2016. Effects of food variability on growth and reproduction of Aedes aegypti. Ecology and Evolution, 6 (2): 552-559.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Berna Demirci 0000-0003-2610-5479

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 1 Eylül 2021
Kabul Tarihi 2 Ocak 2022
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Demirci, B. (2021). Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey. Turkish Journal of Entomology, 45(4), 499-510. https://doi.org/10.16970/entoted.989659
AMA Demirci B. Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey. TED. Aralık 2021;45(4):499-510. doi:10.16970/entoted.989659
Chicago Demirci, Berna. “Size and Shape Variations in Wing Morphology of Anopheles Maculipennis s.S. Meigen, 1818 (Diptera: Culicidae) from Northeastern Turkey”. Turkish Journal of Entomology 45, sy. 4 (Aralık 2021): 499-510. https://doi.org/10.16970/entoted.989659.
EndNote Demirci B (01 Aralık 2021) Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey. Turkish Journal of Entomology 45 4 499–510.
IEEE B. Demirci, “Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey”, TED, c. 45, sy. 4, ss. 499–510, 2021, doi: 10.16970/entoted.989659.
ISNAD Demirci, Berna. “Size and Shape Variations in Wing Morphology of Anopheles Maculipennis s.S. Meigen, 1818 (Diptera: Culicidae) from Northeastern Turkey”. Turkish Journal of Entomology 45/4 (Aralık 2021), 499-510. https://doi.org/10.16970/entoted.989659.
JAMA Demirci B. Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey. TED. 2021;45:499–510.
MLA Demirci, Berna. “Size and Shape Variations in Wing Morphology of Anopheles Maculipennis s.S. Meigen, 1818 (Diptera: Culicidae) from Northeastern Turkey”. Turkish Journal of Entomology, c. 45, sy. 4, 2021, ss. 499-10, doi:10.16970/entoted.989659.
Vancouver Demirci B. Size and shape variations in wing morphology of Anopheles maculipennis s.s. Meigen, 1818 (Diptera: Culicidae) from northeastern Turkey. TED. 2021;45(4):499-510.