Araştırma Makalesi
BibTex RIS Kaynak Göster

Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae)

Yıl 2016, Cilt: 40 Sayı: 4, 365 - 375, 10.10.2016

Öz

Bacillus thuringiensis is the bacterium most commonly used for biopesticide production due to parasporal crystal formation during its growth cycle. As a consequence of repeated use, B. thuringiensis biopesticides may cause the development of resistance in the pests. Therefore, it is necessary to explore new B. thuringiensis strains with a certain degree of bioactivity. In this study (2012-2013), the bioactivity of native B. thuringiensis strains from the Aegean Region of Turkey were tested against second instar larvae of Ephestia kuehniella and Plodia interpunctella. The bioactivity of 21 B. thuringiensis strains with cry1, cry2 or cry9 gene was determined as percent mortality according to Abbott’s formula. The highest mortality rates were 42 and 63% in E. kuehniella and P. interpunctella, respectively. These mortality rates were equal to or 1.8 times greater than that of B. thuringiensis subsp. kurstaki. In addition, plasmid profiles of B. thuringiensis strains changed between 5-18 kb. Moreover, SDS-PAGE analysis of the most toxic strains indicated the presence of Cry1 and Cry2 proteins. Two different cry2 gene profiles containing either cry2Aa1 or combination of cry2Aa1 and cry2Ab2 genes were detected by PCR analysis. In addition, partial DNA sequence analysis of cry2A genes indicated phylogenetic differences among the toxic strains and B. thuringiensis subsp. kurstaki. As a result, these B. thuringiensis strains may be used to control both E. kuehniella and P. interpunctella as alternative biopesticides in cases of insect resistance to  currently used B. thuringiensis preparations.

Kaynakça

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Alper, M., H. Güneş, A. Tatlıpinar, B. Çöl, H. S. Civelek, C. Özkan & B. Poyraz, 2014. Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydın Province. Turkish Journal of Agriculture and Forestry, 38: 898-907.
  • Apaydin, Ö., Ç. Çınar, F. Turanli, Ş. Harsa & H. Güneş, 2008. Identification and bioactivity of native strains of Bacillus thuringiensis from grain-related habitats in Turkey. Biological Control, 45 (1): 21-28.
  • Ausebel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl, 2003. “Preparation and Analysis of DNA, (2.0.1-2.1.5) 177-184”. In: Current Protocols in Molecular Biology. John Wiley & Sons Inc., New York, (A.5.45) 4648 pp.
  • Azizoglu, U., S. Yılmaz, A. Ayvaz, S. Karabörklü & M. Akbulut, 2011. Characterization of local Bacillus thuringiensis isolates and their toxicity to Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) larvae. Egyptian Journal of Biological Pest Control, 21 (2): 143-150.
  • Azizoglu, U., A. Ayvaz, S. Yılmaz, S. Karabörklü & R. Temizgul, 2016. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects. Brazilian Journal of Microbiology, 47: 597-602.
  • Bozlağan, İ., A. Ayvaz, F. Öztürk, L. Açık, M. Akbulut & S. Yılmaz, 2010. Detection of cry1 gene in Bacillus thuringiensis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Turkish Journal of Agriculture and Forestry, 34: 145-154.
  • Bradford, M. M., 1976. A rapid and sensitive method for quantitition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Bravo, A., S. Sarabia, L. Lopez, H. Ontiveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalobos, G. Peña, M-E. Nuñez-Valdez, M. Soberon & R. Quintero, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64 (12): 4965-4972.
  • Bravo, A., S. Likitvivatanavong, S. S. Gill & M. Soberόn, 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41: 423-431.
  • Carlson, C. R., T. Johensen & A. B. Kolsto, 1996. The choromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of Bacillus cereus type strain ATCC14579. FEMS Microbiology Letters, 141 (2-3): 163-167.
  • Chilcott, C. N & P. J. Wigley, 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. Journal of Invertebrate Pathology, 61 (3): 244-247.
  • Cricmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum & D. H. Dean, 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62 (3): 807-813.
  • Crickmore, N., 2006. Beyond the spore-past and future developments of Bacillus thuringiensis as a biopesticide. Journal of Applied Microbiology, 101 (3): 616-619.
  • Feitelson, J. S., J. Payne & L. Kim, 1992. Bacillus thuringiensis: insects and beyond. Bio/Tecnology, 10: 271-275.
  • Ferre, J., B. Escriche, Y. Bel & J. Van Rie, 1995. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiology Letters, 132 (1-2): 1-7.
  • Hongyu, Z., Y. Ziniu & D. Wangxi, 2000. Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China. Crop Protection, 19 (7): 449-454.
  • Höfte, H. & H. R. Whiteley, 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53 (2): 242–255.
  • Liang, H., Y. Liu, J. Zhu, P. Guan, S. Li, S. Wang, A. Zheng, H. Liu & P. Li, 2011. Characterization of cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan Basin, China. Brazilian Journal of Microbiology, 42 (1): 140-146.
  • O`Sullivan, D. J. & T. R. Klaenhammer, 1993. Rapid mini-prep ısolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology, 59 (8): 2730-2733.
  • Ozkan, C., 2006. Laboratory rearing of the solitary egg-larval parasitoid, Chelonus oculator Panzer (Hymenoptera: Braconidae) on a new recorded factitious host Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Pest Science. 79: 27-29
  • Palma, L., D. Munoz, C. Berry, J. Murillo & P. Cabellero, 2014. Bacillus thuringiensis: An overview of their biological activity. Toxins, 6 (12): 3296-3325.
  • Rajamohan, F., E. Alcantara, M. K. Lee, X. J. Chen, A. Curtiss & D. H. Dean, 1995. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. Journal of Bacteriology, 177 (9): 2276-2282.
  • Rowe, G. E., A. Margaritis & H. T. Dulmage, 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. Critical Reviews in Biotechnology, 6 (1): 87-127.
  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.
  • Salehi Jouzani, G. R., A. P. Abad, A. Seifinejad, R. Marzban, K. Kariman & B. Maleki, 2008. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. Journal of Industrial Microbiology & Biotechnology, 35 (2): 83-94.
  • Sanchis, V., 2011. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy for Sustainable Development, 31 (1): 217-231.
  • Sauka, D. H., J. G. Cozzi & G. B. Benintende, 2005. Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie van Leeuwenhoek, 88 (2): 163-165.
  • Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler & D.H. Dean, 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62 (3): 775–806.
  • Sedlacek, J. D., P. A. Weston & R. J. Barney, 1995. “Lepidoptera and Psocoptera, 41-70”. In: Integrated Management of Insect in Stored Products (Eds. B. Subramanyam & D. W. Hagstrum) Marcel-Dekker, Inc., New York, USA, 432 pp.
  • SPSS, 2001. SPSS Version 10.0.SPSS Inc, 233 S.Wacker Drive, Chicago, Illinois.
  • Tabashnik, B. E., 1994. Evolution of resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 39: 47-79.
  • Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24 (8): 1596-1599.
  • Udayasuriyan, V., A. Nakamura, H. Mori, H. Masaki & T. Uozumi, 1994. Cloning of a new cryIA(a) gene from Bacillus thuringiensis strain FU-2-7 and analysis of chimaeric CryIA(a) proteins for toxicity. Bioscience, Biotechnology, and Biochemistry, 58 (5): 830-835.

cry gene pozitif Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) izolatlarının Ephestia kuehniella Zeller, 1879 ve Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae) üzerindeki biyoaktiviteleri

Yıl 2016, Cilt: 40 Sayı: 4, 365 - 375, 10.10.2016

Öz

Bacillus thuringiensis üreme döngüsü sırasında kristal oluşturması nedeniyle biyopestisit üretimi için en çok kullanılan bakteridir. Bacillus thuringiensis biyopestisitlerinin tekrarlayan kullanımları zararlılarda direnç gelişimine neden olabileceğinden, belirli düzeyde biyoakiviteye sahip yeni B. thuringiensis izolatlarının araştırılmasına ihtiyaç vardır. Bu çalışmada, Ege Bölgesin’den elde edilen doğal B. thuringiensis izolatlarının biyoaktivitesi Ephestia kuehniella ve Plodia interpunctella’nın ikinci dönem larvalarına karşı 2012-2013 yıllarında araştırılmıştır. cry1, cry2 ya da cry9 geni taşıyan 21 B. thuringiensis izolatının biyoaktivitesi Abbott formülüne göre yüzde ölüm olarak belirlenmiştir. En yüksek ölüm oranları, E. kuehniella ve P. interpunctella’ ya karşı sırasıyla %42 ve %63 bulunmuştur. Bu ölüm oranları, B. thuringiensis subsp. kurstaki’ninkine eşit veya B. thuringiensis subsp. kurstaki’ninkinden 1.8 kat daha yüksektir. Buna ek olarak, B. thuringiensis izolatlarının plazmit profilleri 5-18 kb arasında değişmiştir. Ayrıca, en toksik izolatların SDS-PAGE analizi Cry1 ve Cry2 proteinlerinin varlığını göstermiştir. PCR analizi ile ya cry2Aa1 veya cry2Aa1 ve cry2Ab2 genlerinin kombinasyonunu içeren iki farklı cry2 gen profili belirlenmiştir. Ayrıca, cry2A genlerinin kısmi DNA sekans analizi, toksik izolatlar ve B. thuringiensis subsp. kurstaki arasındaki filogenetik farklılıkları göstermiştir. Sonuç olarak, bu B. thuringiensis izolatları bilinen B. thuringiensis preperasyonlarına karşı böcek direnci olması durumunda alternatif biyopestisitler olarak hem E. kuehniella hem de P. interpunctella’yı kontrol etmek için kullanılabilir.

Kaynakça

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Alper, M., H. Güneş, A. Tatlıpinar, B. Çöl, H. S. Civelek, C. Özkan & B. Poyraz, 2014. Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydın Province. Turkish Journal of Agriculture and Forestry, 38: 898-907.
  • Apaydin, Ö., Ç. Çınar, F. Turanli, Ş. Harsa & H. Güneş, 2008. Identification and bioactivity of native strains of Bacillus thuringiensis from grain-related habitats in Turkey. Biological Control, 45 (1): 21-28.
  • Ausebel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl, 2003. “Preparation and Analysis of DNA, (2.0.1-2.1.5) 177-184”. In: Current Protocols in Molecular Biology. John Wiley & Sons Inc., New York, (A.5.45) 4648 pp.
  • Azizoglu, U., S. Yılmaz, A. Ayvaz, S. Karabörklü & M. Akbulut, 2011. Characterization of local Bacillus thuringiensis isolates and their toxicity to Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) larvae. Egyptian Journal of Biological Pest Control, 21 (2): 143-150.
  • Azizoglu, U., A. Ayvaz, S. Yılmaz, S. Karabörklü & R. Temizgul, 2016. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects. Brazilian Journal of Microbiology, 47: 597-602.
  • Bozlağan, İ., A. Ayvaz, F. Öztürk, L. Açık, M. Akbulut & S. Yılmaz, 2010. Detection of cry1 gene in Bacillus thuringiensis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Turkish Journal of Agriculture and Forestry, 34: 145-154.
  • Bradford, M. M., 1976. A rapid and sensitive method for quantitition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Bravo, A., S. Sarabia, L. Lopez, H. Ontiveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalobos, G. Peña, M-E. Nuñez-Valdez, M. Soberon & R. Quintero, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64 (12): 4965-4972.
  • Bravo, A., S. Likitvivatanavong, S. S. Gill & M. Soberόn, 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41: 423-431.
  • Carlson, C. R., T. Johensen & A. B. Kolsto, 1996. The choromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of Bacillus cereus type strain ATCC14579. FEMS Microbiology Letters, 141 (2-3): 163-167.
  • Chilcott, C. N & P. J. Wigley, 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. Journal of Invertebrate Pathology, 61 (3): 244-247.
  • Cricmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum & D. H. Dean, 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62 (3): 807-813.
  • Crickmore, N., 2006. Beyond the spore-past and future developments of Bacillus thuringiensis as a biopesticide. Journal of Applied Microbiology, 101 (3): 616-619.
  • Feitelson, J. S., J. Payne & L. Kim, 1992. Bacillus thuringiensis: insects and beyond. Bio/Tecnology, 10: 271-275.
  • Ferre, J., B. Escriche, Y. Bel & J. Van Rie, 1995. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiology Letters, 132 (1-2): 1-7.
  • Hongyu, Z., Y. Ziniu & D. Wangxi, 2000. Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China. Crop Protection, 19 (7): 449-454.
  • Höfte, H. & H. R. Whiteley, 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53 (2): 242–255.
  • Liang, H., Y. Liu, J. Zhu, P. Guan, S. Li, S. Wang, A. Zheng, H. Liu & P. Li, 2011. Characterization of cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan Basin, China. Brazilian Journal of Microbiology, 42 (1): 140-146.
  • O`Sullivan, D. J. & T. R. Klaenhammer, 1993. Rapid mini-prep ısolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology, 59 (8): 2730-2733.
  • Ozkan, C., 2006. Laboratory rearing of the solitary egg-larval parasitoid, Chelonus oculator Panzer (Hymenoptera: Braconidae) on a new recorded factitious host Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Pest Science. 79: 27-29
  • Palma, L., D. Munoz, C. Berry, J. Murillo & P. Cabellero, 2014. Bacillus thuringiensis: An overview of their biological activity. Toxins, 6 (12): 3296-3325.
  • Rajamohan, F., E. Alcantara, M. K. Lee, X. J. Chen, A. Curtiss & D. H. Dean, 1995. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. Journal of Bacteriology, 177 (9): 2276-2282.
  • Rowe, G. E., A. Margaritis & H. T. Dulmage, 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. Critical Reviews in Biotechnology, 6 (1): 87-127.
  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.
  • Salehi Jouzani, G. R., A. P. Abad, A. Seifinejad, R. Marzban, K. Kariman & B. Maleki, 2008. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. Journal of Industrial Microbiology & Biotechnology, 35 (2): 83-94.
  • Sanchis, V., 2011. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agronomy for Sustainable Development, 31 (1): 217-231.
  • Sauka, D. H., J. G. Cozzi & G. B. Benintende, 2005. Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie van Leeuwenhoek, 88 (2): 163-165.
  • Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler & D.H. Dean, 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62 (3): 775–806.
  • Sedlacek, J. D., P. A. Weston & R. J. Barney, 1995. “Lepidoptera and Psocoptera, 41-70”. In: Integrated Management of Insect in Stored Products (Eds. B. Subramanyam & D. W. Hagstrum) Marcel-Dekker, Inc., New York, USA, 432 pp.
  • SPSS, 2001. SPSS Version 10.0.SPSS Inc, 233 S.Wacker Drive, Chicago, Illinois.
  • Tabashnik, B. E., 1994. Evolution of resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 39: 47-79.
  • Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24 (8): 1596-1599.
  • Udayasuriyan, V., A. Nakamura, H. Mori, H. Masaki & T. Uozumi, 1994. Cloning of a new cryIA(a) gene from Bacillus thuringiensis strain FU-2-7 and analysis of chimaeric CryIA(a) proteins for toxicity. Bioscience, Biotechnology, and Biochemistry, 58 (5): 830-835.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Hatice Güneş

Mehlika Alper

Bekir Çöl

Hilal Tunca

Yayımlanma Tarihi 10 Ekim 2016
Gönderilme Tarihi 2 Mayıs 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 40 Sayı: 4

Kaynak Göster

APA Güneş, H., Alper, M., Çöl, B., Tunca, H. (2016). Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 40(4), 365-375.
AMA Güneş H, Alper M, Çöl B, Tunca H. Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). TED. Ekim 2016;40(4):365-375.
Chicago Güneş, Hatice, Mehlika Alper, Bekir Çöl, ve Hilal Tunca. “Bioactivities of Cry Gene Positive Bacillus Thuringiensis (Berliner) (Bacillales: Bacillaceae) Strains on Ephestia Kuehniella Zeller, 1879 and Plodia Interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology 40, sy. 4 (Ekim 2016): 365-75.
EndNote Güneş H, Alper M, Çöl B, Tunca H (01 Ekim 2016) Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). Turkish Journal of Entomology 40 4 365–375.
IEEE H. Güneş, M. Alper, B. Çöl, ve H. Tunca, “Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae)”, TED, c. 40, sy. 4, ss. 365–375, 2016.
ISNAD Güneş, Hatice vd. “Bioactivities of Cry Gene Positive Bacillus Thuringiensis (Berliner) (Bacillales: Bacillaceae) Strains on Ephestia Kuehniella Zeller, 1879 and Plodia Interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology 40/4 (Ekim 2016), 365-375.
JAMA Güneş H, Alper M, Çöl B, Tunca H. Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). TED. 2016;40:365–375.
MLA Güneş, Hatice vd. “Bioactivities of Cry Gene Positive Bacillus Thuringiensis (Berliner) (Bacillales: Bacillaceae) Strains on Ephestia Kuehniella Zeller, 1879 and Plodia Interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology, c. 40, sy. 4, 2016, ss. 365-7.
Vancouver Güneş H, Alper M, Çöl B, Tunca H. Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). TED. 2016;40(4):365-7.