Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping

Yıl 2020, Cilt: 44 Sayı: 4, 539 - 557, 31.12.2020
https://doi.org/10.16970/entoted.770018

Öz

The aim of the study was to determine the species composition, diversity, similarity and completeness of cave-dwelling arthropods in cave zones (entrance, twilight and dark zones) in Erdal Şekeroğlu Cave (ESC) (Atabey-Isparta Province) and Kadıini Cave (KIC) (Alanya-Antalya Province) ecosystems in Turkey. The study also aimed to investigate whether these species can be used for mapping cave zones. The samplings were conducted by using aspirator and pitfall trap methods in ESC among 2010-2020 and in KIC in 2017. Hence statistical analyses were performed with the data gathered from the field studies conducted in the same year (2017) in order to evaluate ecological data in the two cave ecosystems homogeneously. During the study, a total of 51 arthropod species, mostly hexapods, belonging to five classes were collected. Biodiversity parameters, similarity index, indicator species analyses, and species richness estimators were calculated for each cave and cave zones. In addition to reporting the distributions of hexapods in cave ecosystems, this paper discusses for the first time if such ecological data can inform cave mapping and exploration.

Teşekkür

Part of the study was presented as an oral abstract at the VII. Plant Protection Congress (2018, Muğla, Turkey). We would like to thank for their help during the surveys to the members of the Biospleology Society of Turkey (BAT, Turkey), Anatolian Speleological Society (ASPEG), and Akdeniz University Cave Research Association (AKÜMAK). Thank you to DİP Cave Research Magazine, which is a popular magazine, for broadcasting the species list of 2017 February results of Kadıini Cave. We are glad for identifications to Dr. Ariel-Leib-Leonid (Friedman Tel Aviv University and The Steinhardt Museum of Natural History, Israel) for Curculionidae (Coleoptera) species, Dr. Borislav Gueorguiev (National Museum of Natural History, Bulgaria) for Carabidae (Coleoptera) species, Dr. M. Sait Taylan (Hakkari University, Turkey) for Orthoptera species, Dr. Feza Can Cengiz (Mustafa Kemal University, Turkey) for Lepidoptera species, Kadir Boğaç Kunt (Arachnology Association of Turkey) for Arachnida samples, Dr. Ersen Aydın YAĞMUR (Manisa Celal Bayar University, Turkey) for Scorpiones species, Dr. Dragan Ž Antić (University of Belgrade, Serbia) for diplopod species. We also would like to specially thank Speleological Federation of Turkey for their support throughout this study, and Republic of Turkey Ministry of Culture and Tourism and Manager of Antalya Alanya Museum Seher TÜRKMEN for providing permit for researching in KIC fauna

Kaynakça

  • Anonymous, 2019. Mağara Turizmi. (Web page: http://yigm.kulturturizm.gov.tr/TR-10335/magara-turizmi.html) (Date accessed: 14.07.2020).
  • Barr, T. C., 1968. “Cave Ecology and the Evolution of Troglobites. 35-102”. In: Evolutionary Biology, Vol. 2 (Eds. T. Dobzhansky, M. K. Hecht & W. C. Steere) Springer, Boston, MA, USA, 452 pp.
  • Barton, H. A. & V. Jurado, 2007. What’s up down there? Microbial diversity in caves. Microbe, 2 (3): 132-138.
  • Burnham, K. P. & W. S. Overton, 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65 (3): 623-633.
  • Burnham, K. P. & W. S. Overton, 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology, 60 (5): 927-936.
  • Camacho, A. I., 1992. The Natural History of Biospeleology. Madrid: Museo Nacional De Ciencias Naturales, Spain, 701 pp.
  • Carignan, V. & M. Villard, 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment, 78 (1): 45- 61.
  • Chao, A., 1987. Estimating the population size for capture data with unequal catchability. Biometrics, 43 (4): 783-791.
  • Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11 (4): 265-270.
  • Chao, A. & C. H. Chiu, 2016. Species richness: Estimation and comparison. Wiley Stats. Ref: Statistics Reference Online, 1-26. (Web page: https://doi.org/10.1002/9781118445112.stat03432.pub2) (Date accessed: 01.07.2020).
  • Chao, A. & S. M. Lee, 1992 Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87 (417): 210-217.
  • Chao, A., M. C. Ma & M. C. K. Yang, 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80 (1): 193-201.
  • Chazdon, R. L., R. K. Colwell, J. S. Denslow & M. R. Guariguata, 1998. “Statistical Methods for Estimating Species Richness of Woody Regeneration in Primary and Secondary Rain Forests of NE Costa Rica, 285-309”. In: Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old-World Case Studies (Eds. F. Dallmeier & J. A. Comiskey). Unesco Paris & The Parthenon Publishing Group, Paris, 671 pp.
  • Colwell, R. K., 1997. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User´s Guide), Versión 7.01. (Web page: http://viceroy.eeb.uconn.edu/estimates) (Date accessed: 10.01.2020).
  • Colwell, R. K., 2019. EstimateS 8.2 User’s Guide. (Web page: http://viceroy.eeb.uconn.edu/estimates) (Date accessed: 10.01.2020).
  • Colwell, R. K. & J. A. Coddington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B), 345 (1311): 101-118.
  • Cramer, W., E. Egea, J. Fischer, A. Lux, J. M. Salles, J. Settele & M. Tichit, 2017. Biodiversity and food security: from trade-offs to synergies. Regional Environmental Change, 17 (5): 1257-1259.
  • Culver, D. C., M. C. Christman, B. Sket & P. Trontelj, 2004. Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodiversity & Conservation, 13 (6): 1209-1229.
  • Culver, D. C., L. Deharveng, A. Bedos, J. J. Lewis, M. Madden, J. R. Reddell, B. Sket, P. Trontelj & D. White, 2006. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography, 29 (1): 120-128.
  • Culver, D. C. & T. Pipan, 2018. “Insect in Caves, 123-152”. In: Insect Biodiversity: Science and Society Vol.: 2 (Eds. R. G. Foottit & P.H. Adler). Wiley Blackwell, UK, 1024 pp.
  • Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies, 62 (1): 11-17.
  • Culver, D. C. & W. B. White, 2005. Encyclopedia of Caves. Elsevier, Amsterdam, 1250 pp.
  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecologial Monographs, 67 (3): 345-366.
  • Eberhard, S., 1992. The Invertebrate Cave Fauna of Tasmania: Ecology and Conservation Biology. University of Tasmania, (Unpublished) Research Master Thesis, 184 pp.
  • Feest, A., T. D. Aldred & K. Jedamzik, 2010. Biodiversity quality: a paradigm for biodiversity. Ecological Indicators, 10 (6): 1077-1082.
  • Fernandes, C. S., M. Batalha & M. E. Bichuette, 2016. Does the cave environment reduce functional diversity? Plos One, 11 (3): 1-14.
  • Gunn, J., 2004. Encyclopedia of Caves and Karst Science. Taylor & Francis, New York, 1940 pp.
  • Heimann, D., 2004. EvenDiv 1.1. Based on a DBase Program Code Supplied by Jörg Perner and Martin Schnitter. Institute of Ecology, University of Jena.
  • Heltshe, J. & N. E. Forrester, 1983. Estimating species richness using the jackknife procedure. Biometrics, 39 (1): 1-11.
  • Heydemann, B., 1953. Agrarökologische Problematik dargetan an Untersuchungen über die Tierwelt der Bodenoberfläche der Kulturfelder. Dissertation, University of Kiel, 433 pp.
  • Hobbs III, H. H., 2012. “Diversity Patterns in the United States, 251-264”. In: Encyclopedia of Caves (Eds. W. B. White & D. C. Culver). Academic Press, Amsterdam, 1250 pp.
  • Howarth, F. G., 1983. Ecology of cave arthropods. Annual Review of Entomology, 28 (1): 365-389.
  • Kovach, W. L., 1999. A Multi variate Statistical Package. United Kingdom: Kovach Computing Services.
  • Kowalczk, A., 2009. High Resolution Microclimate Study of Hollow Ridge Cave: Relationships Between Cave Meteorology, Air Chemistry, and Hydrology and the Impact on Speleothem Deposition. The Florida State University College of Arts and Sciences, (Unpublished) MSc Thesis, Florida, US, 238 pp.
  • Krebs, C. J., 1999. Ecological Methodology. An Imprint of Addison Wesley Longman Inc., 620 pp.
  • Kunt, K. B., E. A.Yağmur, S. Özkütük, H. Durmus & S. Anlas, 2010. Checklist of the cave dwelling invertebrates (Animalia) of Turkey. Biological Diversity and Conservation, 3 (2): 26-41.
  • Kurniawan, I. D., C. Rahmadi, R. E. Caraka, & T. E. Ardi, 2018. Cave-dwelling arthropod community of semedi show cave in Gunungsewu karst area, Pacitan, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 19 (3): 857-866.
  • Latella, L. & F. Stoch, 2002. “Biospeleology, 53-86”. In: Caves and Karstic Phenomena: Life in the Subterranean World (Ed. F. Stoch). Italian Ministry of the Environment and Territory Protection, 159 pp.
  • Latella, L., N. Verdari, & M. Gobbi, 2012. Distribution of terrestrial cave-dwelling arthropods in two adjacent Prealpine Italian areas with different glacial histories. Zoological Studies, 51 (7): 1113-1121.
  • Ledesma, E., A. J. Valverde, E. Baquero, R. Jordana, A. Castro & V. M. Ortuño, 2020. Arthropod biodiversity patterns point to the Mesovoid Shallow Substratum (MSS) as a climate refugium. Zoology, 141: 125771.
  • Lee, S. M. & A. Chao, 1994. Estimating population size via sample coverage for closed capture-recapture models. Biometrics, 50 (1): 88-97.
  • Lee, M., D. B. Meisinger, R. Aubrecht, L. Kovacik, C. S. Jimenez, S. Baskar, R. Baskar, W. Liebl, M. Porter & A. S. Engel, 2012. “Caves and Karst Environments, 320-344”. In: Life at Extremes: Environments, Organisms and Strategies for Survival (Ed. E. Bell). CAB International, UK, 576 pp.
  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press. 203 pp.
  • Magurran, A. E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, 179 pp.
  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science Ltd., 256 pp.
  • McCune, B. & M. J. Mefford, 2016. PC-ORD. Multivariate analysis of ecological data. Version 7. MjM Software Design, Gleneden Beach, Oregon, U.S.A.
  • McGeoch, M. A. & S. L. Chown, 1998. Scaling up the value of bioindicators. Trends in Ecology & Evolution, 13 (2): 46-47.
  • Moulds, T. A., 2006. The Seasonality, Diversity and Ecology of Cavernicolous Guano Dependent Arthropod Ecosystems in Southern Australia. The University of Adelaide, (Unpublished) Doctoral Dissertation, Australia, 260 pp.
  • Niemi, G. J. & M. E. McDonald, 2004. Application of ecological indicators. Annual Review of Ecology, Evolution and Systematics, 35 (1): 89-111.
  • Niemiller, M. L. & S. J. Taylor, 2019. “Protecting Cave Life, 822-829”. In: Encyclopedia of Caves-3rd Edition (Eds. W. B. White, D. C. Culver & T. Pipan) Academic Press, Amsterdam, 1250 pp.
  • Northup, D. E. & K. H. Lavoie, 2001. Geomicrobiology of caves: A review. Geomicrobiol Journal, 18 (3): 199-222.
  • Palmer, A. N., 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103 (1): 1-21.
  • Poulson, T. L. & D. C. Culver, 1969. Diversity in terrestrial cave communities. Ecology, 50 (1): 153-158.
  • Prous, X., R. L. Ferreira & R. P. Martins, 2004. Ecotone delimitation: Epigean-hypogean transition in cave ecosystems. Austral Ecology, 29 (4): 374-382.
  • Samways, M. J., 1994. Insect conservation biology. Chapman & Hall, London, UK, 374 pp.
  • Samways, M. J., 2007. Insect conservation: A synthetic management approach. Annual Review of Entomology, 52: 465-487.
  • Schneider, K. & D. C. Culver, 2004. Estimating subterranean species richness using intensive sampling and rarefaction curves in a high-density cave region in West Virginia. Journal of Cave and Karst Studies the National Speleological Society Bulletin, 66 (2): 39-45.
  • Schneider, K., A. D. Kay & W. F. Fagan, 2010. Adaptation to a limiting environment: the phosphorus content of terrestrial cave arthropods. Ecological Research, 25 (3): 565-577.
  • Smith, E. P. & G. van Belle, 1984. Nonparametric estimation of species richness. Biometrics, 40 (1): 119-129.
  • Southwood, T. R. E., 1971. Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman and Hall., 391 pp.
  • Taylan, M. S., M. Yılmazer & D. Şirin, 2020. A comparative study on temperature and relative humidity data of three caves in different climatic regions of Turkey, with notes on the distribution of Anatolian Cave Crickets (Insecta, Orthoptera, Rhaphidophoridae). Journal of Entomological Research Society, 22 (1): 53-73.
  • Tercafs, R., 1988. Optimal management of karst sites with cave fauna protection. Environmental Conservation, 15 (2): 149-158.
  • Tobin, B. W., B. T. Hutchins & B. F. Schwartz, 2013. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. International Journal of Speleology, 42 (3): 203-214.
  • Tolan-Smith, C. & C. Bonsall, 1997. “The Human Use of Caves, 217-218”. In: The Human Use of Caves (Eds. C. Bonsall & C. Tolan-Smith). Oxford, British Arcaeological Reports, International Series No: 667, 218 pp.
  • Tydecks, L., J. M. Jeschke, M. Wolf, G. Singer & K. Tockner, 2018. Spatial and topical imbalances in biodiversity research. PLoS ONE, 13 (7): e0199327.
  • Vandel, A., 1964. Biospeleology-The Biology of Cavernicolous Animals (Translated by B. E. Freeman, 1965). Pergamon Press, Oxford, 524 pp.
  • Veni, G., 2019. Quiet preparation for the international year of caves and karst and other advances in speleology. International Union of Speleology Bulletin, 61 (1): 4-5.
  • Village, N. P., B. District, K, Province & P. D. R. Lao, 2019. Xe Bang Fai Cave Development and Management Strategy 2018-2020. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 20 pp.
  • Weliange, W. S., 2016. “Bio-Speleology and possible trophic networks in Sri Lankan caves, 12”. 12. Proceedings of the International Forestry and Environment Symposium (2016, Sri Lanka), Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka, 116 pp.
  • Wittmann, R., 2004. Retromysis nura new genus and species (Mysidacea, Mysidae, Heteromysini) from a superficial marine cave in Minorca (Balearic Islands, Mediterranean Sea). Crustaceana, 77 (7): 769-783.
  • Wynne, J. J., 2014. On Sampling, Habitat and Relict Species of Cave-Dwelling Arthropods in the American Southwest and Easter Island. Northern Arizona University, (Unpublished) Doctoral Dissertation, US, 211 pp.
  • Yılmaz Usta, N. D., 2019. Demographical analysis of the late Chalcolithic/Early Bronze Age skeletal population in Kadıini Cave. Antropoloji, 38: 65-78.
  • Zacharias, M. A. & J. C. Roff, 2001 Use of focal species in marine conservation and management: a review and critique. Aquatic Conservation: Marine and Freshwater Ecosystems, 11 (1): 59-76.

Erdal Şekeroğlu (Isparta-Türkiye) ve Kadıini (Antalya-Türkiye) mağara ekosistemlerinde arthropod biyolojik çeşitliliği ile bazı ekolojik parametrelerin belirlenmesi ve böceklerin mağara haritalamasında kullanım olanaklarının araştırılması

Yıl 2020, Cilt: 44 Sayı: 4, 539 - 557, 31.12.2020
https://doi.org/10.16970/entoted.770018

Öz

Çalışmada, Erdal Şekeroğlu (ESC) (Isparta, Türkiye) ve Kadıini (KIC) (Antalya, Türkiye) Mağaralarının farklı (giriş, alacakaranlık ve karanlık) zonlarında yaşayan arthropod türlerinin çeşitliliğinin, benzerliğinin ve tahmini tür sayılarının belirlenmesi amaçlanmıştır. Ayrıca, çalışmada belirlenen türlerin mağara bölgelerinin haritalanmasında kullanılabilirlikleri araştırılmıştır. Örneklemeler, ESC'de 2010-2020 yılları arasında, KIC'da ise 2017 yılında, aspiratör ve çukur tuzak yöntemleri kullanılarak gerçekleştirilmiştir. İstatistiksel analizler, iki mağara ekosistemindeki ekolojik verileri homojen olarak değerlendirmek amacıyla, aynı yıl (2017) yapılan saha çalışmalarından elde edilen verilerle yapılmıştır. Çalışmada, çoğu hexapod olmak üzere beş sınıfa ait toplam 51 eklem bacaklı türü tespit edilmiştir. Her iki mağara ve mağara zonları için biyolojik çeşitlilik, benzerlik, biyolojik gösterge ve tür tahminleyici analizleri yapılmıştır. Ayrıca, böceklerin mağara haritalaması ve keşiflerinde kullanılabilirliği de dünyada ilk kez tartışılmıştır.

Kaynakça

  • Anonymous, 2019. Mağara Turizmi. (Web page: http://yigm.kulturturizm.gov.tr/TR-10335/magara-turizmi.html) (Date accessed: 14.07.2020).
  • Barr, T. C., 1968. “Cave Ecology and the Evolution of Troglobites. 35-102”. In: Evolutionary Biology, Vol. 2 (Eds. T. Dobzhansky, M. K. Hecht & W. C. Steere) Springer, Boston, MA, USA, 452 pp.
  • Barton, H. A. & V. Jurado, 2007. What’s up down there? Microbial diversity in caves. Microbe, 2 (3): 132-138.
  • Burnham, K. P. & W. S. Overton, 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65 (3): 623-633.
  • Burnham, K. P. & W. S. Overton, 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology, 60 (5): 927-936.
  • Camacho, A. I., 1992. The Natural History of Biospeleology. Madrid: Museo Nacional De Ciencias Naturales, Spain, 701 pp.
  • Carignan, V. & M. Villard, 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment, 78 (1): 45- 61.
  • Chao, A., 1987. Estimating the population size for capture data with unequal catchability. Biometrics, 43 (4): 783-791.
  • Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11 (4): 265-270.
  • Chao, A. & C. H. Chiu, 2016. Species richness: Estimation and comparison. Wiley Stats. Ref: Statistics Reference Online, 1-26. (Web page: https://doi.org/10.1002/9781118445112.stat03432.pub2) (Date accessed: 01.07.2020).
  • Chao, A. & S. M. Lee, 1992 Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87 (417): 210-217.
  • Chao, A., M. C. Ma & M. C. K. Yang, 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80 (1): 193-201.
  • Chazdon, R. L., R. K. Colwell, J. S. Denslow & M. R. Guariguata, 1998. “Statistical Methods for Estimating Species Richness of Woody Regeneration in Primary and Secondary Rain Forests of NE Costa Rica, 285-309”. In: Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old-World Case Studies (Eds. F. Dallmeier & J. A. Comiskey). Unesco Paris & The Parthenon Publishing Group, Paris, 671 pp.
  • Colwell, R. K., 1997. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User´s Guide), Versión 7.01. (Web page: http://viceroy.eeb.uconn.edu/estimates) (Date accessed: 10.01.2020).
  • Colwell, R. K., 2019. EstimateS 8.2 User’s Guide. (Web page: http://viceroy.eeb.uconn.edu/estimates) (Date accessed: 10.01.2020).
  • Colwell, R. K. & J. A. Coddington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B), 345 (1311): 101-118.
  • Cramer, W., E. Egea, J. Fischer, A. Lux, J. M. Salles, J. Settele & M. Tichit, 2017. Biodiversity and food security: from trade-offs to synergies. Regional Environmental Change, 17 (5): 1257-1259.
  • Culver, D. C., M. C. Christman, B. Sket & P. Trontelj, 2004. Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodiversity & Conservation, 13 (6): 1209-1229.
  • Culver, D. C., L. Deharveng, A. Bedos, J. J. Lewis, M. Madden, J. R. Reddell, B. Sket, P. Trontelj & D. White, 2006. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography, 29 (1): 120-128.
  • Culver, D. C. & T. Pipan, 2018. “Insect in Caves, 123-152”. In: Insect Biodiversity: Science and Society Vol.: 2 (Eds. R. G. Foottit & P.H. Adler). Wiley Blackwell, UK, 1024 pp.
  • Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies, 62 (1): 11-17.
  • Culver, D. C. & W. B. White, 2005. Encyclopedia of Caves. Elsevier, Amsterdam, 1250 pp.
  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecologial Monographs, 67 (3): 345-366.
  • Eberhard, S., 1992. The Invertebrate Cave Fauna of Tasmania: Ecology and Conservation Biology. University of Tasmania, (Unpublished) Research Master Thesis, 184 pp.
  • Feest, A., T. D. Aldred & K. Jedamzik, 2010. Biodiversity quality: a paradigm for biodiversity. Ecological Indicators, 10 (6): 1077-1082.
  • Fernandes, C. S., M. Batalha & M. E. Bichuette, 2016. Does the cave environment reduce functional diversity? Plos One, 11 (3): 1-14.
  • Gunn, J., 2004. Encyclopedia of Caves and Karst Science. Taylor & Francis, New York, 1940 pp.
  • Heimann, D., 2004. EvenDiv 1.1. Based on a DBase Program Code Supplied by Jörg Perner and Martin Schnitter. Institute of Ecology, University of Jena.
  • Heltshe, J. & N. E. Forrester, 1983. Estimating species richness using the jackknife procedure. Biometrics, 39 (1): 1-11.
  • Heydemann, B., 1953. Agrarökologische Problematik dargetan an Untersuchungen über die Tierwelt der Bodenoberfläche der Kulturfelder. Dissertation, University of Kiel, 433 pp.
  • Hobbs III, H. H., 2012. “Diversity Patterns in the United States, 251-264”. In: Encyclopedia of Caves (Eds. W. B. White & D. C. Culver). Academic Press, Amsterdam, 1250 pp.
  • Howarth, F. G., 1983. Ecology of cave arthropods. Annual Review of Entomology, 28 (1): 365-389.
  • Kovach, W. L., 1999. A Multi variate Statistical Package. United Kingdom: Kovach Computing Services.
  • Kowalczk, A., 2009. High Resolution Microclimate Study of Hollow Ridge Cave: Relationships Between Cave Meteorology, Air Chemistry, and Hydrology and the Impact on Speleothem Deposition. The Florida State University College of Arts and Sciences, (Unpublished) MSc Thesis, Florida, US, 238 pp.
  • Krebs, C. J., 1999. Ecological Methodology. An Imprint of Addison Wesley Longman Inc., 620 pp.
  • Kunt, K. B., E. A.Yağmur, S. Özkütük, H. Durmus & S. Anlas, 2010. Checklist of the cave dwelling invertebrates (Animalia) of Turkey. Biological Diversity and Conservation, 3 (2): 26-41.
  • Kurniawan, I. D., C. Rahmadi, R. E. Caraka, & T. E. Ardi, 2018. Cave-dwelling arthropod community of semedi show cave in Gunungsewu karst area, Pacitan, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 19 (3): 857-866.
  • Latella, L. & F. Stoch, 2002. “Biospeleology, 53-86”. In: Caves and Karstic Phenomena: Life in the Subterranean World (Ed. F. Stoch). Italian Ministry of the Environment and Territory Protection, 159 pp.
  • Latella, L., N. Verdari, & M. Gobbi, 2012. Distribution of terrestrial cave-dwelling arthropods in two adjacent Prealpine Italian areas with different glacial histories. Zoological Studies, 51 (7): 1113-1121.
  • Ledesma, E., A. J. Valverde, E. Baquero, R. Jordana, A. Castro & V. M. Ortuño, 2020. Arthropod biodiversity patterns point to the Mesovoid Shallow Substratum (MSS) as a climate refugium. Zoology, 141: 125771.
  • Lee, S. M. & A. Chao, 1994. Estimating population size via sample coverage for closed capture-recapture models. Biometrics, 50 (1): 88-97.
  • Lee, M., D. B. Meisinger, R. Aubrecht, L. Kovacik, C. S. Jimenez, S. Baskar, R. Baskar, W. Liebl, M. Porter & A. S. Engel, 2012. “Caves and Karst Environments, 320-344”. In: Life at Extremes: Environments, Organisms and Strategies for Survival (Ed. E. Bell). CAB International, UK, 576 pp.
  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press. 203 pp.
  • Magurran, A. E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, 179 pp.
  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science Ltd., 256 pp.
  • McCune, B. & M. J. Mefford, 2016. PC-ORD. Multivariate analysis of ecological data. Version 7. MjM Software Design, Gleneden Beach, Oregon, U.S.A.
  • McGeoch, M. A. & S. L. Chown, 1998. Scaling up the value of bioindicators. Trends in Ecology & Evolution, 13 (2): 46-47.
  • Moulds, T. A., 2006. The Seasonality, Diversity and Ecology of Cavernicolous Guano Dependent Arthropod Ecosystems in Southern Australia. The University of Adelaide, (Unpublished) Doctoral Dissertation, Australia, 260 pp.
  • Niemi, G. J. & M. E. McDonald, 2004. Application of ecological indicators. Annual Review of Ecology, Evolution and Systematics, 35 (1): 89-111.
  • Niemiller, M. L. & S. J. Taylor, 2019. “Protecting Cave Life, 822-829”. In: Encyclopedia of Caves-3rd Edition (Eds. W. B. White, D. C. Culver & T. Pipan) Academic Press, Amsterdam, 1250 pp.
  • Northup, D. E. & K. H. Lavoie, 2001. Geomicrobiology of caves: A review. Geomicrobiol Journal, 18 (3): 199-222.
  • Palmer, A. N., 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103 (1): 1-21.
  • Poulson, T. L. & D. C. Culver, 1969. Diversity in terrestrial cave communities. Ecology, 50 (1): 153-158.
  • Prous, X., R. L. Ferreira & R. P. Martins, 2004. Ecotone delimitation: Epigean-hypogean transition in cave ecosystems. Austral Ecology, 29 (4): 374-382.
  • Samways, M. J., 1994. Insect conservation biology. Chapman & Hall, London, UK, 374 pp.
  • Samways, M. J., 2007. Insect conservation: A synthetic management approach. Annual Review of Entomology, 52: 465-487.
  • Schneider, K. & D. C. Culver, 2004. Estimating subterranean species richness using intensive sampling and rarefaction curves in a high-density cave region in West Virginia. Journal of Cave and Karst Studies the National Speleological Society Bulletin, 66 (2): 39-45.
  • Schneider, K., A. D. Kay & W. F. Fagan, 2010. Adaptation to a limiting environment: the phosphorus content of terrestrial cave arthropods. Ecological Research, 25 (3): 565-577.
  • Smith, E. P. & G. van Belle, 1984. Nonparametric estimation of species richness. Biometrics, 40 (1): 119-129.
  • Southwood, T. R. E., 1971. Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman and Hall., 391 pp.
  • Taylan, M. S., M. Yılmazer & D. Şirin, 2020. A comparative study on temperature and relative humidity data of three caves in different climatic regions of Turkey, with notes on the distribution of Anatolian Cave Crickets (Insecta, Orthoptera, Rhaphidophoridae). Journal of Entomological Research Society, 22 (1): 53-73.
  • Tercafs, R., 1988. Optimal management of karst sites with cave fauna protection. Environmental Conservation, 15 (2): 149-158.
  • Tobin, B. W., B. T. Hutchins & B. F. Schwartz, 2013. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. International Journal of Speleology, 42 (3): 203-214.
  • Tolan-Smith, C. & C. Bonsall, 1997. “The Human Use of Caves, 217-218”. In: The Human Use of Caves (Eds. C. Bonsall & C. Tolan-Smith). Oxford, British Arcaeological Reports, International Series No: 667, 218 pp.
  • Tydecks, L., J. M. Jeschke, M. Wolf, G. Singer & K. Tockner, 2018. Spatial and topical imbalances in biodiversity research. PLoS ONE, 13 (7): e0199327.
  • Vandel, A., 1964. Biospeleology-The Biology of Cavernicolous Animals (Translated by B. E. Freeman, 1965). Pergamon Press, Oxford, 524 pp.
  • Veni, G., 2019. Quiet preparation for the international year of caves and karst and other advances in speleology. International Union of Speleology Bulletin, 61 (1): 4-5.
  • Village, N. P., B. District, K, Province & P. D. R. Lao, 2019. Xe Bang Fai Cave Development and Management Strategy 2018-2020. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 20 pp.
  • Weliange, W. S., 2016. “Bio-Speleology and possible trophic networks in Sri Lankan caves, 12”. 12. Proceedings of the International Forestry and Environment Symposium (2016, Sri Lanka), Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka, 116 pp.
  • Wittmann, R., 2004. Retromysis nura new genus and species (Mysidacea, Mysidae, Heteromysini) from a superficial marine cave in Minorca (Balearic Islands, Mediterranean Sea). Crustaceana, 77 (7): 769-783.
  • Wynne, J. J., 2014. On Sampling, Habitat and Relict Species of Cave-Dwelling Arthropods in the American Southwest and Easter Island. Northern Arizona University, (Unpublished) Doctoral Dissertation, US, 211 pp.
  • Yılmaz Usta, N. D., 2019. Demographical analysis of the late Chalcolithic/Early Bronze Age skeletal population in Kadıini Cave. Antropoloji, 38: 65-78.
  • Zacharias, M. A. & J. C. Roff, 2001 Use of focal species in marine conservation and management: a review and critique. Aquatic Conservation: Marine and Freshwater Ecosystems, 11 (1): 59-76.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Gökhan Aydın 0000-0003-2301-5195

İsmail Şen 0000-0002-9905-3537

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 15 Temmuz 2020
Kabul Tarihi 3 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 44 Sayı: 4

Kaynak Göster

APA Aydın, G., & Şen, İ. (2020). Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. Turkish Journal of Entomology, 44(4), 539-557. https://doi.org/10.16970/entoted.770018
AMA Aydın G, Şen İ. Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. TED. Aralık 2020;44(4):539-557. doi:10.16970/entoted.770018
Chicago Aydın, Gökhan, ve İsmail Şen. “Determination of Arthropod Biodiversity and Some Ecological Parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) Cave Ecosystems With Evaluation of Usability of Insects in Cave Mapping”. Turkish Journal of Entomology 44, sy. 4 (Aralık 2020): 539-57. https://doi.org/10.16970/entoted.770018.
EndNote Aydın G, Şen İ (01 Aralık 2020) Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. Turkish Journal of Entomology 44 4 539–557.
IEEE G. Aydın ve İ. Şen, “Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping”, TED, c. 44, sy. 4, ss. 539–557, 2020, doi: 10.16970/entoted.770018.
ISNAD Aydın, Gökhan - Şen, İsmail. “Determination of Arthropod Biodiversity and Some Ecological Parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) Cave Ecosystems With Evaluation of Usability of Insects in Cave Mapping”. Turkish Journal of Entomology 44/4 (Aralık 2020), 539-557. https://doi.org/10.16970/entoted.770018.
JAMA Aydın G, Şen İ. Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. TED. 2020;44:539–557.
MLA Aydın, Gökhan ve İsmail Şen. “Determination of Arthropod Biodiversity and Some Ecological Parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) Cave Ecosystems With Evaluation of Usability of Insects in Cave Mapping”. Turkish Journal of Entomology, c. 44, sy. 4, 2020, ss. 539-57, doi:10.16970/entoted.770018.
Vancouver Aydın G, Şen İ. Determination of arthropod biodiversity and some ecological parameters of Erdal Şekeroğlu (Isparta, Turkey) and Kadıini (Antalya, Turkey) cave ecosystems with evaluation of usability of insects in cave mapping. TED. 2020;44(4):539-57.