Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae)

Yıl 2021, Cilt: 45 Sayı: 2, 159 - 172, 01.06.2021
https://doi.org/10.16970/entoted.672744

Öz

With the increasing uses of biological control methods, knowing the physiological and immunological effects of these insecticides on insects is essential for them to be used safely in agricultural areas. The aim of the study is to determine the effects of pyriproxyfen and Bacillus thuringiensis subsp. kurstaki individually and as a mixture on malondialdehyde levels (MDA), glutathione-s-transferase, acetylcholinesterase, cytochrome P450 enzyme activities in hemolymph, midgut, and fat body and total (THC) and differential hemocyte counts (DHC) of fifth instar larvae of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae) 24, 48 and 72 h after exposure under laboratory conditions (30 ± 1ºC, 65 ± 5% RH). The study was conducted in the Animal Physiology Research Laboratory of the Department of Biology, Faculty of Science and Letter, University of Çukurova between 2016-2018. Effects of these insecticides on antioxidant, detoxification enzyme activities and MDA levels were changed depends on exposure time and the differences of tissues. THC decreased after 24 h, whereas it had increased after 48 and 72 h. DHC induced depends on exposure time and applied insecticide. This study revealed that pyriproxyfen and B. thuringiensis applications caused biochemical, physiological reactions and effected the immune defense system of larvae by the alterations in hemocyte counts.

Destekleyen Kurum

The Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

114Z023

Teşekkür

This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project Number: 114Z023) and University of Çukurova Scientific Research Projects (Project Number: FEF2017D27).

Kaynakça

  • Abd el-Aziz, N. M. & H. H. Awad, 2010. Changes in the hemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41 (3): 203-209.
  • Armstrong, R. N., 1997. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research in Toxicology, 10 (1): 2-18.
  • Attique, M. N. R., Khaliq, A. & A. H. Sayyed, 2006. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures. Journal of Applied Entomology, 130 (2): 122-127.
  • Badawy, M. E. I., H. M. Nasr & E. I. Rabea, 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie, 46 (2): 177-193.
  • Beetz, S., T. K. Holthusen, J. Koolman & T. Trenczek, 2008. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta. Archives of Insect Biochemistry, 67 (2): 63-75.
  • Boctor, I. Z. & H. S. Salama, 1983. Effect of Bacillus thuringiensis on the lipid content and compositions of Spodoptera littoralis larva. Journal of Invertebrate Pathology, 41 (3): 381-384.
  • Boily, M., B. Sarrasin, C. Deblois, P. Aras & M. Chagnon, 2013. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environmental Science and Pollution Research, 20 (8): 5603-5614.
  • Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Broderick, N. A., K. F. Raffa & J. Handelsman, 2010. Chemical Modulators of the Innate Immune Response Alter Gypsy Moth Larval Susceptibility to Bacillus thuringiensis. BMC Microbiology, 10 (129): 1-13.
  • Bronksill, J. F., 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal Lepidopterist’s Society, 15 (2): 102-104.
  • Carvalho, S. M., L. P. Belzunces, G. A. Carvalho, J. L. Brunet & A. Badiou Beneteau, 2013. Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental Toxicology and Chemistry, 32 (9): 2117-2124.
  • Casida, J. E. & K. A. Durkin, 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology, 58 (1): 99-117.
  • De Block, M. & R. Stoks, 2008. Compensatory growth and oxidative stress in a damselfly. Proceedings of The Royal Society of London Series B-Biological Sciences, 275 (1636): 781-785.
  • Dubovskiy, I. M., V. V. Martemyanov, Y. L. Vorontsova, M. J. Rantala, E. V. Gryzanova & V. V. Glupov, 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera: Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 148 (1): 1-5.
  • Durmus, Y., 2007. Effects of Sodium Tetraborate on Survival, Development, and Activities of Some Enzymes of Greater Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae). University of Bulent Ecevit, Zonguldak, (Unpublished) Master Thesis, 75 pp (in Turkish with abstract in English).
  • Ellman, G. L., K. O. Courtney, V. Anders & R. M. Featherstone, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2): 88-95.
  • Fahmy, N. M., 2012. Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, Spodoptera littoralis (Biosd.). Egyptian Academical Journal of Biological Science, 5 (1):137-149.
  • Ghasemi, V., S. Moharramipor & J. J. Sendi, 2014. Impact of pyriproxyfen and methoxyfenozide on hemocytes of the mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Crop Protection, 3 (4): 449-458.
  • Goksoyr, A. & L. Farlin, 1992. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquatic Toxicology, 24 (1-2): 1-19.
  • Habig, W. H., M. J. Pabst & W. B. Jakoby, 1974. Glutathione-s-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249 (22): 7130-7139.
  • Hong, Y., X. Yanga, Y. Huang, G. Yan & Y. Cheng, 2018. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere, 210: 896-906.
  • Hyrsl, P., E. Büyükgüzel & K. Büyükgüzel, 2007. The Effects of boric acid- induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology, 66 (1): 23-31.
  • James, R. R. & J. Xu, 2012. Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology. 10 (2): 175-182.
  • Johnson, R. M., 2015. Honey bee toxicology. Annual Review of Entomology, 60: 415-434.
  • Jones, J. C., 1962. Current concepts concerning insect hemocytes. Americal Zoology, 2 (1): 209-246.
  • Kim, Y., S. Jung & N. Madanagopal, 2008. Antagonistic effect of juvenile hormone on hemocyte-spreading behavior of Spodoptera exigua in response to an insect cytokine and its putative membrane action. Journal of Insect Physiology, 54 (6): 909-915.
  • Lee, K. P., J. S. Cory, K. Wilson, D. Raubenheimer & S. J. Simpson, 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proceeding of Royal Society Biological Science, 273 (1588): 823-829.
  • Li, Z., D. Ptak, L. Zhang, E. K. Walls, W. Zhong & Y. F. Leung, 2012. Phenylthiourea specifically reduces zebrafish eye size. PLoS ONE, 7 (6): e40132, 1-14.
  • Livingstone, D. R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42 (8): 656-666.
  • Manachini, B., V. Arizza, D. Parrinello & N. Parrinello, 2011. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Journal of Invertebrate Pathology, 106 (3): 360-365.
  • Massoulié, J., L. Pezzementi, S. Bon, E. Krejci & F. M. Vallette, 1993. Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41 (1): 31-91.
  • Meng, J. Y., C. Y. Zhang, F. Zhu, X. P. Wang & C. L. Lei, 2009. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. Journal of Insect Physiology, 55 (6): 588-592.
  • Nathan, S. S., M. Y. Choi, H. Y. Seo, C. H. Paik, K. Kalaivani & J. D. Kim, 2008. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Stal). Ecotoxicological and Environmental Safety, 70 (2): 244-250.
  • Pondeville, E., J. P. David, E. Guittard, A. Maria, J. C. Jacques, H. Ranson, C. Bourgouin & C. DauphinVillemant, 2013. Microarray and RNAi analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. PLoS ONE, 8 (12): e79861, 1-9.
  • Qiu, X., W. Y. Tian & X. Leng, 2003. Cytochrome P450 monooxygenases in the cotton Bollworm (Lepidoptera: Noctuidae): tissue differences and induction. Journal of Economical Entomology, 96 (4): 1283-1289.
  • Rose, R., L. Barbhaiya, R. Roe, G. Rock & E. Hodgson, 1995. Cytochrome P-450- Associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 51 (3): 178-191.
  • Sanjayan, K. P., T. Ravikumar & S. Albert, 1996. Changes in the haemocyte profile of Spilostethus hospes (Fab.) (Heteroptera: Lygaeidae) in relation to eclosion, sex and mating. Journal of Bioscience, 21 (6): 781-788.
  • Scott, J. G., 1999. Cythochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29 (9): 757-777.
  • Sezer, B. & P. Ozalp, 2015. Effects of pyriproxyfen on hemocyte count and morphology of Galleria mellonella. Fresenius Environmental Bulletin, 24 (2a): 621-625.
  • Tuncsoy Sezer, B. & P. Ozalp, 2016. Combined effects of pyriproxyfen and Bacillus thuringiensis on antioxidant activity of hemolymph, midgut and fat body of Galleria mellonella larvae. Fresenius Environmental Bulletin, 25 (5): 1660-1665.
  • Warren, J. T., A. Petryk, G. Marqués, M. Jarcho, J. P. Parvy, C. Dauphin-Villemant, M. B. O'Connor & L. I. Gilbert, 2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 99 (17): 11043-11048.
  • Weirich, G., A. Collins & V. Williams, 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie, 33 (1): 3-14.
  • Wilce, M. C. & M. W. Parker, 1994. Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta, 1205 (1): 1-18.
  • Yorulmaz, S. & R. Ay, 2010. The Enzymes playing role in detoxification of the pesticides in mites and insects. Journal of Agricultural Faculty of Uludag University, 24 (2): 137-148 (in Turkish with abstract in English).
  • Zawisza-Raszka, A. & B. Dolezych, 2008. Acetylcholinesterase, catalase and glutathione s-transferase activity in beet armyworm (Spodoptera exigua) exposed to nickel and/or diazinon. Acta Biologica Hungarica, 59 (1): 31-45.
  • Zhao, G., H. Guo, H. Zhang, X. Zhang, H. Qian, G. Li & A. Xu, 2020. Effects of pyriproxyfen exposure on immune signaling pathway and transcription of detoxification enzyme genes in fat body of silkworm, Bombyx mori. Pesticide Biochemistry and Physiology, 168 (104621): 1-7.
  • Zhu, Y.C., J. Yao, J. Adamczyk & R. Luttrell, 2017. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE, 12 (5): e0176837, 1-16.
  • Zibaee, A., A. R. Bandani & D. Malagoli, 2012. Methoxyfenozide and pyriproxyfen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pesticide Biochemistry and Physiology, 102 (1): 30-37.

Pyriproxyfen ve Bacillus thuringiensis'in Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae)'nın enzimatik antioksidan savunma sistemi ve hemosit sayılarına etkileri

Yıl 2021, Cilt: 45 Sayı: 2, 159 - 172, 01.06.2021
https://doi.org/10.16970/entoted.672744

Öz

Biyolojik mücadele yöntemlerinin artan kullanımları nedeniyle, bu insektisitlerin böcekler üzerindeki fizyolojik ve immünolojik etkilerinin bilinmesi, tarımsal alanlarda güvenle kullanılabilmesi için büyük önem taşımaktadır. Çalışmanın amacı, pyriproxyfen ve Bacillus thuringiensis subsp. kurstaki’ nin tek başına ve karışım halinde 24,48 ve 72 saatlik etkileri sonucunda, Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae)’nın 5. dönem larvaların hemolenf, orta barsak ve yağ dokusunda malondialdehid (MDA) miktarı, glutatyon-s-transferaz, asetilkolinesteraz, sitokrom P450 aktiviteleri ile total ve diferansiyel hemosit sayıları üzerine etkilerini laboratuvar koşulları altında (30 ± 1ºC, %65 ± 5 RH) belirlemektir. Çalışma, Çukurova Üniversitesi, Fen Edebiyat Fakültesi, Biyoloji Bölümü Hayvan Fizyolojisi araştırma laboratuvarında 2016-2018 yılları arasında gerçekleştirilmiştir. Pyriproxyfen ve B. thuringiensis’in etkisinde, larvaların hemolenf, orta barsak ve yağ dokusunda antioksidan ve detoksifikasyon enzim aktiviteleri ile MDA seviyesinde uygulama süresine ve doku farklılıklarına bağlı olarak değişimler belirlenmiştir. Total hemosit sayısında uygulamadan 24 saat sonra azalma, 48 ve 72 saat sonra ise artış meydana gelmiştir. Diferansiyel hemosit sayısı üzerine etkilerinde ise, pyriproxyfen ve B. thuringiensis uygulamasına ve uygulama zamanına bağlı olarak değişiklikler meydana geldiği belirlenmiştir. Bu çalışma ile pyriproxyfen ve B. thuringiensis uygulamalarının biyokimyasal ve fizyolojik reaksiyonlara neden olduğu ve hemosit sayılarında değişikliğe yol açarak bağışıklık savunma sistemini etkilediği ortaya konmuştur.

Proje Numarası

114Z023

Kaynakça

  • Abd el-Aziz, N. M. & H. H. Awad, 2010. Changes in the hemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41 (3): 203-209.
  • Armstrong, R. N., 1997. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chemical Research in Toxicology, 10 (1): 2-18.
  • Attique, M. N. R., Khaliq, A. & A. H. Sayyed, 2006. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures. Journal of Applied Entomology, 130 (2): 122-127.
  • Badawy, M. E. I., H. M. Nasr & E. I. Rabea, 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie, 46 (2): 177-193.
  • Beetz, S., T. K. Holthusen, J. Koolman & T. Trenczek, 2008. Correlation of hemocyte counts with different developmental parameters during the last larval instar of the tobacco hornworm, Manduca sexta. Archives of Insect Biochemistry, 67 (2): 63-75.
  • Boctor, I. Z. & H. S. Salama, 1983. Effect of Bacillus thuringiensis on the lipid content and compositions of Spodoptera littoralis larva. Journal of Invertebrate Pathology, 41 (3): 381-384.
  • Boily, M., B. Sarrasin, C. Deblois, P. Aras & M. Chagnon, 2013. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environmental Science and Pollution Research, 20 (8): 5603-5614.
  • Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Broderick, N. A., K. F. Raffa & J. Handelsman, 2010. Chemical Modulators of the Innate Immune Response Alter Gypsy Moth Larval Susceptibility to Bacillus thuringiensis. BMC Microbiology, 10 (129): 1-13.
  • Bronksill, J. F., 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal Lepidopterist’s Society, 15 (2): 102-104.
  • Carvalho, S. M., L. P. Belzunces, G. A. Carvalho, J. L. Brunet & A. Badiou Beneteau, 2013. Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environmental Toxicology and Chemistry, 32 (9): 2117-2124.
  • Casida, J. E. & K. A. Durkin, 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology, 58 (1): 99-117.
  • De Block, M. & R. Stoks, 2008. Compensatory growth and oxidative stress in a damselfly. Proceedings of The Royal Society of London Series B-Biological Sciences, 275 (1636): 781-785.
  • Dubovskiy, I. M., V. V. Martemyanov, Y. L. Vorontsova, M. J. Rantala, E. V. Gryzanova & V. V. Glupov, 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera: Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 148 (1): 1-5.
  • Durmus, Y., 2007. Effects of Sodium Tetraborate on Survival, Development, and Activities of Some Enzymes of Greater Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae). University of Bulent Ecevit, Zonguldak, (Unpublished) Master Thesis, 75 pp (in Turkish with abstract in English).
  • Ellman, G. L., K. O. Courtney, V. Anders & R. M. Featherstone, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2): 88-95.
  • Fahmy, N. M., 2012. Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, Spodoptera littoralis (Biosd.). Egyptian Academical Journal of Biological Science, 5 (1):137-149.
  • Ghasemi, V., S. Moharramipor & J. J. Sendi, 2014. Impact of pyriproxyfen and methoxyfenozide on hemocytes of the mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Crop Protection, 3 (4): 449-458.
  • Goksoyr, A. & L. Farlin, 1992. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquatic Toxicology, 24 (1-2): 1-19.
  • Habig, W. H., M. J. Pabst & W. B. Jakoby, 1974. Glutathione-s-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249 (22): 7130-7139.
  • Hong, Y., X. Yanga, Y. Huang, G. Yan & Y. Cheng, 2018. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere, 210: 896-906.
  • Hyrsl, P., E. Büyükgüzel & K. Büyükgüzel, 2007. The Effects of boric acid- induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology, 66 (1): 23-31.
  • James, R. R. & J. Xu, 2012. Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology. 10 (2): 175-182.
  • Johnson, R. M., 2015. Honey bee toxicology. Annual Review of Entomology, 60: 415-434.
  • Jones, J. C., 1962. Current concepts concerning insect hemocytes. Americal Zoology, 2 (1): 209-246.
  • Kim, Y., S. Jung & N. Madanagopal, 2008. Antagonistic effect of juvenile hormone on hemocyte-spreading behavior of Spodoptera exigua in response to an insect cytokine and its putative membrane action. Journal of Insect Physiology, 54 (6): 909-915.
  • Lee, K. P., J. S. Cory, K. Wilson, D. Raubenheimer & S. J. Simpson, 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proceeding of Royal Society Biological Science, 273 (1588): 823-829.
  • Li, Z., D. Ptak, L. Zhang, E. K. Walls, W. Zhong & Y. F. Leung, 2012. Phenylthiourea specifically reduces zebrafish eye size. PLoS ONE, 7 (6): e40132, 1-14.
  • Livingstone, D. R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42 (8): 656-666.
  • Manachini, B., V. Arizza, D. Parrinello & N. Parrinello, 2011. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Journal of Invertebrate Pathology, 106 (3): 360-365.
  • Massoulié, J., L. Pezzementi, S. Bon, E. Krejci & F. M. Vallette, 1993. Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41 (1): 31-91.
  • Meng, J. Y., C. Y. Zhang, F. Zhu, X. P. Wang & C. L. Lei, 2009. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. Journal of Insect Physiology, 55 (6): 588-592.
  • Nathan, S. S., M. Y. Choi, H. Y. Seo, C. H. Paik, K. Kalaivani & J. D. Kim, 2008. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Stal). Ecotoxicological and Environmental Safety, 70 (2): 244-250.
  • Pondeville, E., J. P. David, E. Guittard, A. Maria, J. C. Jacques, H. Ranson, C. Bourgouin & C. DauphinVillemant, 2013. Microarray and RNAi analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. PLoS ONE, 8 (12): e79861, 1-9.
  • Qiu, X., W. Y. Tian & X. Leng, 2003. Cytochrome P450 monooxygenases in the cotton Bollworm (Lepidoptera: Noctuidae): tissue differences and induction. Journal of Economical Entomology, 96 (4): 1283-1289.
  • Rose, R., L. Barbhaiya, R. Roe, G. Rock & E. Hodgson, 1995. Cytochrome P-450- Associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 51 (3): 178-191.
  • Sanjayan, K. P., T. Ravikumar & S. Albert, 1996. Changes in the haemocyte profile of Spilostethus hospes (Fab.) (Heteroptera: Lygaeidae) in relation to eclosion, sex and mating. Journal of Bioscience, 21 (6): 781-788.
  • Scott, J. G., 1999. Cythochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29 (9): 757-777.
  • Sezer, B. & P. Ozalp, 2015. Effects of pyriproxyfen on hemocyte count and morphology of Galleria mellonella. Fresenius Environmental Bulletin, 24 (2a): 621-625.
  • Tuncsoy Sezer, B. & P. Ozalp, 2016. Combined effects of pyriproxyfen and Bacillus thuringiensis on antioxidant activity of hemolymph, midgut and fat body of Galleria mellonella larvae. Fresenius Environmental Bulletin, 25 (5): 1660-1665.
  • Warren, J. T., A. Petryk, G. Marqués, M. Jarcho, J. P. Parvy, C. Dauphin-Villemant, M. B. O'Connor & L. I. Gilbert, 2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 99 (17): 11043-11048.
  • Weirich, G., A. Collins & V. Williams, 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie, 33 (1): 3-14.
  • Wilce, M. C. & M. W. Parker, 1994. Structure and function of glutathione S-transferases. Biochimica et Biophysica Acta, 1205 (1): 1-18.
  • Yorulmaz, S. & R. Ay, 2010. The Enzymes playing role in detoxification of the pesticides in mites and insects. Journal of Agricultural Faculty of Uludag University, 24 (2): 137-148 (in Turkish with abstract in English).
  • Zawisza-Raszka, A. & B. Dolezych, 2008. Acetylcholinesterase, catalase and glutathione s-transferase activity in beet armyworm (Spodoptera exigua) exposed to nickel and/or diazinon. Acta Biologica Hungarica, 59 (1): 31-45.
  • Zhao, G., H. Guo, H. Zhang, X. Zhang, H. Qian, G. Li & A. Xu, 2020. Effects of pyriproxyfen exposure on immune signaling pathway and transcription of detoxification enzyme genes in fat body of silkworm, Bombyx mori. Pesticide Biochemistry and Physiology, 168 (104621): 1-7.
  • Zhu, Y.C., J. Yao, J. Adamczyk & R. Luttrell, 2017. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS ONE, 12 (5): e0176837, 1-16.
  • Zibaee, A., A. R. Bandani & D. Malagoli, 2012. Methoxyfenozide and pyriproxyfen alter the cellular immune reactions of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) against Beauveria bassiana. Pesticide Biochemistry and Physiology, 102 (1): 30-37.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Benay Tunçsoy 0000-0003-4361-3475

Pınar Özalp 0000-0002-2977-6334

Proje Numarası 114Z023
Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 7 Ağustos 2020
Kabul Tarihi 15 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 45 Sayı: 2

Kaynak Göster

APA Tunçsoy, B., & Özalp, P. (2021). Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 45(2), 159-172. https://doi.org/10.16970/entoted.672744
AMA Tunçsoy B, Özalp P. Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae). TED. Haziran 2021;45(2):159-172. doi:10.16970/entoted.672744
Chicago Tunçsoy, Benay, ve Pınar Özalp. “Effects of Pyriproxyfen and Bacillus Thuringiensis Berliner, 1915 on Enzymatic Antioxidant Defense System and Hemocytes of Galleria Mellonella (L., 1758) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology 45, sy. 2 (Haziran 2021): 159-72. https://doi.org/10.16970/entoted.672744.
EndNote Tunçsoy B, Özalp P (01 Haziran 2021) Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae). Turkish Journal of Entomology 45 2 159–172.
IEEE B. Tunçsoy ve P. Özalp, “Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae)”, TED, c. 45, sy. 2, ss. 159–172, 2021, doi: 10.16970/entoted.672744.
ISNAD Tunçsoy, Benay - Özalp, Pınar. “Effects of Pyriproxyfen and Bacillus Thuringiensis Berliner, 1915 on Enzymatic Antioxidant Defense System and Hemocytes of Galleria Mellonella (L., 1758) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology 45/2 (Haziran 2021), 159-172. https://doi.org/10.16970/entoted.672744.
JAMA Tunçsoy B, Özalp P. Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae). TED. 2021;45:159–172.
MLA Tunçsoy, Benay ve Pınar Özalp. “Effects of Pyriproxyfen and Bacillus Thuringiensis Berliner, 1915 on Enzymatic Antioxidant Defense System and Hemocytes of Galleria Mellonella (L., 1758) (Lepidoptera: Pyralidae)”. Turkish Journal of Entomology, c. 45, sy. 2, 2021, ss. 159-72, doi:10.16970/entoted.672744.
Vancouver Tunçsoy B, Özalp P. Effects of pyriproxyfen and Bacillus thuringiensis Berliner, 1915 on enzymatic antioxidant defense system and hemocytes of Galleria mellonella (L., 1758) (Lepidoptera: Pyralidae). TED. 2021;45(2):159-72.