Effect of washing method on the reduction of insecticide residues and quality characteristics of sweet cherry fruits
Yıl 2024,
Cilt: 48 Sayı: 1, 89 - 101, 18.03.2024
Gülden Hazarhun
,
Nabi Alper Kumral
,
Burcu Gümül
,
Ayşenur Kolcu
,
Simge Özkan
Öz
Sweet cherry trees were sprayed with 5 insecticides (acetamiprid, dimethoate, lambda-cyhalothrin, malathion, tau-fluvalinate) at the recommended field doses in this study. Fruits were harvested after the pre-harvested interval for each pesticide completed and then they were immersed into tap water and three different washing solutions (with three different concentrations) for 3 minutes (at 20ºC). Insecticide concentrations were detected with a multi-residual analysis method using LC-MS/MS in Bursa Uludağ University in 2022. Following the treatments, changes in the quality characteristics of fruits were also investigated by quality (colour, texture and fruit cracking rate, water-soluble dry matter) and sensory analysis (fruit and stem colour, firmness, appearance, general acceptability). The results revealed that washing method with tap water during 3 min decreased insecticide residue level by 7-45% depending on insecticide active compound. Higher reduction rates were observed by washing with citric acid (10%), sodium bicarbonate (2.5%) and sodium hydroxide (0.5%). But significant reductions were detected only in lambda-cyhalothrin and malathion residues when compared with the newly harvested fruit samples. Processing factors (PF) of all washing methods were generally lower than 1 except for three treatments. PF values showed variations depending on the type of washing solution and the active compound of insecticides. Although washing with citric acid (10%), sodium bicarbonate (2.5%) and sodium hydroxide (0.5%) solutions caused reduction in residue levels, their negative effects on the quality and sensory characteristics of the fruits cannot be ruled out.
Etik Beyan
There is no tests on animals and human.
Destekleyen Kurum
Bursa Uludag University, Scientific Research Unit
Proje Numarası
FKA-2021-320
Teşekkür
This study was funded by Bursa Uludağ University Scientific Research Projects Unit with Grant number FKA-2021-320. The authors thank Prof. Dr. Ayşegül Kumral for her critical reading and scientific corrections of the manuscript.
Kaynakça
- Acoglu, B. & P. Y. Omeroglu, 2021. Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT, 147 (1): 111690.
- Aguilera, A., A. Valverde, F. Camacho, M. Boulaid & L. García-Fuentes, 2012. Effect of household processing and unit to unit variability of azoxystrobin, acrinathrin and kresoxim methyl residues in zucchini. Food Control, 25 (2): 594-600.
- Akkaya, H., 2021. 0900 Ziraat Kiraz Çeşidinin Çatlama Ve Meyve Kalitesi Üzerine Biyofilm Uygulama Rejimlerinin Etkisi. Ordu Üniversitesi Fen Bilimleri Enstitüsü. Bahçe Bitkileri Ana Bilim Dalı (Unpublished) Yüksek Lisans Tezi. Ordu, 64 s (in Turkish with abstract in English).
- Al-Taher, F., Y. Chen, P. Wylie & J. Cappozzo, 2013. Reduction of pesticide residues in tomatoes and other produce. Journal of Food Protection, 76 (3): 510-515.
- Bilginer, S., L. Demirsoy & H. Demirsoy, 1999. “The effects of vapor gard, GA3 and calcium hydroxide applications on fruit cracking in Turkoglu sweet cherry, 14-17”. 3. Turkish National Horticulture Congress in Turkey (14-17 September, Ankara, Türkiye), 1058 pp (in Turkish).
- BKUTARIM, 2023. Republic of Türkiye, Ministry of Food, Agriculture and Livestock, General Directorate of Food and Control, Department of Plant Protection Products. Plant Protection Products Database. (Web page: https://bku.tarim.gov.tr/Arama/Index) (Date accessed: December, 2023)
- Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
- Chaovanalikit, A. & R. E. Wrolstad, 2004. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69 (1): 67-72.
- Chen, H., X. Liu, D. Yang & P. Yin, 2013. Degradation pattern of gibberellic acid during the whole process of tea production. Food Chemistry, 138 (2-3): 976-981.
- Đorđević, T. M., S. S. Šiler‐Marinković, R. D. Đurović, S. I. Dimitrijević‐Branković & J. S. Gajić Umiljendić, 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture, 93 (13): 3377-3383.
- Doymaz, İ. & O. İsmail, 2011. Drying characteristics of sweet cherry. Food & Bioproducts Processing, 89 (1): 31-38.
- Duman, A., U. Çiftçi & O. Tiryaki, 2021. Farklı yıkama işlemlerinin üzümlerde tebuconazole kalıntısına etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9 (2): 259-269 (in Turkish with abstract in English).
- EU (European Commission), 2023. Pesticides Database. (Web page: http://ec.europa.eu/food/plant/pesticides.en) (Date accessed: December, 2023).
- FAO, 2021. FAOSTAT, Crop Data Base. Food and Agriculture Organization United Nations. (Web page: http://www.fao.org/faostat/en/#data/QC/visualize) (Date accessed: December, 2023).
- Ferretti, G., T. Bacchetti, A. Belleggia & D. Neri, 2010. Cherry antioxidants: from farm to table. Molecules, 15 (10): 6993-7005.
- Gao, L. & G. Mazza, 1995. Characterization, quantitation, and distribution of anthocyanins and colorless phenolics in sweet cherries. Journal of Agricultural Food Chemistry, 43 (2): 343-346.
- Gonçalves, B., A. P. Silva, J. Moutinho-Pereira, E. Bacelar, E. Rosa & A. S. Meyer, 2007. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry, 103 (3): 976-984.
- Habib, M., M. Bhat, B. N. Dar & A. A. Wani, 2017. Sweet cherries from farm to table: A review. Critical Reviews in Food Science and Nutrition, 57 (8): 1638-1649.
- Harinathareddy, A., N. B. L. Prasad & K. Lakshmi Devi, 2014. Effect of household processing methods on the removal of pesticide residues in tomato vegetable. Journal of Environmental Research and Development, 9 (1): 50-50.
- Hazarhun, G., N. A. Kumral, B. Gümül, A. Kolcu & S. Ertaş, 2022. “Optimization of a LC-MS/MS Method for the detection of pesticides currently registered for Sweet Cherry, 2”. I. Gıda Kimyası Kongresi (03-06 March 2022, Antalya, Türkiye), 135 pp (in Turkish).
- Holland, P. T., D. Hamilton, B. Ohlin & M. W. Skidmore, 1994. Effects of storage and processing on pesticide residues in plant products. Pure and Applied Chemistry, 66 (2): 335-356.
- Kappel, F., B. Fisher-Fleming & E. Hogue, 1996. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience, 31 (3): 443-446.
- Karabulut, O. A., S. Lurie & S. Droby, 2001. Evaluation of the use of sodium bicarbonate, potassium sorbate and yeast antagonists for decreasing postharvest decay of sweet cherries. Postharvest Biology and Technology, 23 (3): 233-236.
- Kovács, E., G. Muskovics & R. Perlaki, 2009. Relationship of colour and other quality parameters of sweet cherry during development and ripening. Acta Alimentaria, 38 (4): 415-426.
- Kumral, A., V. Turgu, E. Yıldız, N. A. Kumral, R. N. Çevik, İ. Sevinç, G. Karapapak, A. N. Yüksel & E. Ersöz, 2019. Kuru kayısılarda ferrik oksit ve ozon gazı uygulamalarının, kuru meyve akarı Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) kaynaklı mikrobiyal bulaşma yüküne ve meyve kalite parametrelerine etkisinin belirlenmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 33 (1): 67-82 (in Turkish with abstract in English).
- Lehotay, S. J., 2007. Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate gas chro-matography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Journal of AOAC International, 90 (2): 485-520.
- Lozowicka, B., M. Jankowska, I. Hrynko & P. Kaczynski, 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188 (1): 51-70.
- Martínez-Romero, D., N. Alburquerque, J. M. Valverde, F. Guillén, S. Castillo, D. Valero & M. Serrano, 2006. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: a new edible coating. Postharvest Biology and Technology, 39 (1): 93-100.
- McGuire, R. G., 1992. Reporting of objective color measurements. HortScience, 27 (12): 1254-1255.
Merck, 2023. Merck Safe Data Sheets. (Web page: https://www.sigmaaldrich.com/TR/en/documents-search?tab=sds) (Date accessed: February, 2024).
- OECD (Organisation for Economic Co-operation and Development), 2008. Test no. 508: Magnitude of the pesticide residues in processed commodities, OECD guidelines for the testing of chemicals, Section 5. Paris: OECD Publishing. (Web page: https://doi.org/10.1787/9789264067622-en.OECD) (Date accessed: February, 2024).
- Osman, K. A., A. I. Al-Humaid, K. N. Al-Redhaiman & R. A. ElMergawi, 2014. Safety Methods for Chlorpyrifos Removal from Date Fruits and its Relation with Sugars, Phenolics and Antioxidant Capacity of Fruits. Journal of Food Science Technology, 51 (9): 1762-1772.
- Ozturk, B., E. Bektas, E. Aglar, O. Karakaya & S. Gun, 2018. Cracking and quality attributes of jujube fruits as affected by covering and pre-harvest Parka and GA3 treatments. Scientia Horticulturae, 240 (1): 65-71.
- Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. Journal of Enviromental Science and Health, Part B. 55 (1): 1-10.
- Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
- PPDB, 2023. Pesticide properties database, University of Hertfordshire. (Web page: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm) (Date accessed: December, 2023).
- Prior, R. L., 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78 (3): 570-578.
- Radwan, M. A., M. M. Abu-Elamayem, M. H. Shiboob & A. Abdel-Aal, 2005. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology, 43 (4): 553-557.
- Randhawa, M. A., M. N. Anjum, M. S. Butt, M. Yasin & M. Imran, 2014. Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17 (5): 978-986.
- Romano, G. S. & E. D. Cittadini, 2014. Postharvest colour dynamics of 'bing' and 'newstar' sweet cherry. Acta Horticulture, 1020 (1): 153-156
- SANTE, 2021. Analytical quality control and method validation procedures for pesticide residues analysis ın food and feed: SANTE 11312/2021. (Web page: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/) (Date accessed: December, 2023).
- Simon, J. Y., 2014. The Toxicology and Biochemistry of Insecticides. CRC Press, Taylor & Francis Group, London, UK, 380 pp.
- Simsek, M. & Ö. Süfer, 2021. Effect of pretreatments on refractance window drying, color kinetics and bioactive properties of white sweet cherries (Prunus avium L. stark gold). Journal of Food Processing and Preservation, 45 (11): e15895.
- Tarhan, S., G. Ergunes & O. F. Taser, 2006. Selection of chemical and thermal pretreatment combination to reduce the dehydration time of sour cherry (Prunus cerasus L.). Journal of Food Process Engineering, 29 (6): 651-663.
- Tiryaki, O. & B. Polat, 2023. Effects of washing treatments on pesticide residues in agricultural products. Gıda ve Yem Bilimi Teknolojisi Dergisi, 29 (1): 1-11.
- Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
- TUİK, 2021. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (accessed December, 2023) (in Turkish).
- Yalçın, M., N. Turgut, C. Gökbulut, S. Mermer, S. C. Sofuoğlu, V. Tari & C. Turgut, 2023. Removal of pesticide residues from apple and tomato cuticle. Environmental Science and Pollution Research, 30 (6): 15821-15829.
- Yang, T., J. Doherty, B. Zhao, A. J. Kinchla, J. M. Clark & L. He, 2017. Effectiveness of commercial and homemade washing agents in removing pesticide residues on and in apples. Journal of Agricultural and Food Chemistry, 65 (44): 9744-9752.
- Yildirim, A. N. & F. Koyuncu, 2010. The effect of gibberellic acid applications on the cracking rate and fruit quality in the ‘0900 Ziraat’sweet cherry cultivar. African Journal of Biotechnology, 9 (38): 6307-6311.
Yıkama yönteminin kiraz meyvelerindeki insektisit kalıntılarının azaltılmasına ve ürün kalitesi üzerine etkisi
Yıl 2024,
Cilt: 48 Sayı: 1, 89 - 101, 18.03.2024
Gülden Hazarhun
,
Nabi Alper Kumral
,
Burcu Gümül
,
Ayşenur Kolcu
,
Simge Özkan
Öz
Bu çalışmada, kiraz ağaçlarına 5 insektisit formülasyonu (acetamiprid, dimethoate, lambda-cyhalothrin, malathion, tau-fluvalinate) önerilen dozlarda meyvelere uygulanmıştır. Hasat öncesi bekleme süresinden sonra hasat edilen meyveler musluk suyu ve üç farklı yıkama solüsyonuyla (üç farklı konsantrasyonda) 3 dakika süreyle (20°C'de) yıkanmıştır. İnsektisit kalıntıları LC-MS/MS cihazı kullanılarak çoklu kalıntı analizi yöntemiyle Bursa Uludağ Üniversitesinde 2022 yılında tespit edilmiştir. Yıkama uygulamaların ardından meyvelerin kalite özelliklerinde meydana gelen değişiklikler (renk, doku ve meyve çatlama oranı, suda çözünür kuru madde) ve duyusal özellikleri (meyve ve gövde rengi, sertlik, görünüm, genel kabul edilebilirlik) ayrıca araştırılmıştır. Araştırma sonuçlarına göre, musluk suyuyla 3 dakika süreyle yıkama yöntemi, insektisit etken maddesine bağlı olarak kalıntı seviyesini %7-45 oranında azalttığı ortaya konulmuştur. Diğer taraftan, sitrik asit (%10), sodyum bikarbonat (%2.5) ve sodyum hidroksit (%0.5) ile yıkamada daha yüksek etkiler gözlemlenmiştir. Ancak hasat edilen meyve örnekleriyle karşılaştırıldığında sadece lambda-cyhalothrin ve malathion kalıntılarında istatistiki anlamda önemli azalmalar tespit edilmiştir. Tüm yıkama yöntemlerinin işleme faktörleri (PF), üç işlem dışında genellikle 1'den düşük bulunmuştur. PF değerleri yıkama solüsyonunun cinsine ve insektisitlerin aktif bileşiğine bağlı olarak değişiklik göstermiştir. Sitrik asit (%10), sodyum bikarbonat (%2.5) ve sodyum hidroksit (%0.5) solüsyonları ile yıkama, kalıntı düzeylerinde azalmaya neden olsa da meyvelerin kalitesi ve duyusal özellikleri üzerinde göz ardı edilemez olumsuz etkiler oluşturmuştur.
Proje Numarası
FKA-2021-320
Kaynakça
- Acoglu, B. & P. Y. Omeroglu, 2021. Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT, 147 (1): 111690.
- Aguilera, A., A. Valverde, F. Camacho, M. Boulaid & L. García-Fuentes, 2012. Effect of household processing and unit to unit variability of azoxystrobin, acrinathrin and kresoxim methyl residues in zucchini. Food Control, 25 (2): 594-600.
- Akkaya, H., 2021. 0900 Ziraat Kiraz Çeşidinin Çatlama Ve Meyve Kalitesi Üzerine Biyofilm Uygulama Rejimlerinin Etkisi. Ordu Üniversitesi Fen Bilimleri Enstitüsü. Bahçe Bitkileri Ana Bilim Dalı (Unpublished) Yüksek Lisans Tezi. Ordu, 64 s (in Turkish with abstract in English).
- Al-Taher, F., Y. Chen, P. Wylie & J. Cappozzo, 2013. Reduction of pesticide residues in tomatoes and other produce. Journal of Food Protection, 76 (3): 510-515.
- Bilginer, S., L. Demirsoy & H. Demirsoy, 1999. “The effects of vapor gard, GA3 and calcium hydroxide applications on fruit cracking in Turkoglu sweet cherry, 14-17”. 3. Turkish National Horticulture Congress in Turkey (14-17 September, Ankara, Türkiye), 1058 pp (in Turkish).
- BKUTARIM, 2023. Republic of Türkiye, Ministry of Food, Agriculture and Livestock, General Directorate of Food and Control, Department of Plant Protection Products. Plant Protection Products Database. (Web page: https://bku.tarim.gov.tr/Arama/Index) (Date accessed: December, 2023)
- Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
- Chaovanalikit, A. & R. E. Wrolstad, 2004. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69 (1): 67-72.
- Chen, H., X. Liu, D. Yang & P. Yin, 2013. Degradation pattern of gibberellic acid during the whole process of tea production. Food Chemistry, 138 (2-3): 976-981.
- Đorđević, T. M., S. S. Šiler‐Marinković, R. D. Đurović, S. I. Dimitrijević‐Branković & J. S. Gajić Umiljendić, 2013. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. Journal of the Science of Food and Agriculture, 93 (13): 3377-3383.
- Doymaz, İ. & O. İsmail, 2011. Drying characteristics of sweet cherry. Food & Bioproducts Processing, 89 (1): 31-38.
- Duman, A., U. Çiftçi & O. Tiryaki, 2021. Farklı yıkama işlemlerinin üzümlerde tebuconazole kalıntısına etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9 (2): 259-269 (in Turkish with abstract in English).
- EU (European Commission), 2023. Pesticides Database. (Web page: http://ec.europa.eu/food/plant/pesticides.en) (Date accessed: December, 2023).
- FAO, 2021. FAOSTAT, Crop Data Base. Food and Agriculture Organization United Nations. (Web page: http://www.fao.org/faostat/en/#data/QC/visualize) (Date accessed: December, 2023).
- Ferretti, G., T. Bacchetti, A. Belleggia & D. Neri, 2010. Cherry antioxidants: from farm to table. Molecules, 15 (10): 6993-7005.
- Gao, L. & G. Mazza, 1995. Characterization, quantitation, and distribution of anthocyanins and colorless phenolics in sweet cherries. Journal of Agricultural Food Chemistry, 43 (2): 343-346.
- Gonçalves, B., A. P. Silva, J. Moutinho-Pereira, E. Bacelar, E. Rosa & A. S. Meyer, 2007. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry, 103 (3): 976-984.
- Habib, M., M. Bhat, B. N. Dar & A. A. Wani, 2017. Sweet cherries from farm to table: A review. Critical Reviews in Food Science and Nutrition, 57 (8): 1638-1649.
- Harinathareddy, A., N. B. L. Prasad & K. Lakshmi Devi, 2014. Effect of household processing methods on the removal of pesticide residues in tomato vegetable. Journal of Environmental Research and Development, 9 (1): 50-50.
- Hazarhun, G., N. A. Kumral, B. Gümül, A. Kolcu & S. Ertaş, 2022. “Optimization of a LC-MS/MS Method for the detection of pesticides currently registered for Sweet Cherry, 2”. I. Gıda Kimyası Kongresi (03-06 March 2022, Antalya, Türkiye), 135 pp (in Turkish).
- Holland, P. T., D. Hamilton, B. Ohlin & M. W. Skidmore, 1994. Effects of storage and processing on pesticide residues in plant products. Pure and Applied Chemistry, 66 (2): 335-356.
- Kappel, F., B. Fisher-Fleming & E. Hogue, 1996. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience, 31 (3): 443-446.
- Karabulut, O. A., S. Lurie & S. Droby, 2001. Evaluation of the use of sodium bicarbonate, potassium sorbate and yeast antagonists for decreasing postharvest decay of sweet cherries. Postharvest Biology and Technology, 23 (3): 233-236.
- Kovács, E., G. Muskovics & R. Perlaki, 2009. Relationship of colour and other quality parameters of sweet cherry during development and ripening. Acta Alimentaria, 38 (4): 415-426.
- Kumral, A., V. Turgu, E. Yıldız, N. A. Kumral, R. N. Çevik, İ. Sevinç, G. Karapapak, A. N. Yüksel & E. Ersöz, 2019. Kuru kayısılarda ferrik oksit ve ozon gazı uygulamalarının, kuru meyve akarı Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) kaynaklı mikrobiyal bulaşma yüküne ve meyve kalite parametrelerine etkisinin belirlenmesi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 33 (1): 67-82 (in Turkish with abstract in English).
- Lehotay, S. J., 2007. Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate gas chro-matography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Journal of AOAC International, 90 (2): 485-520.
- Lozowicka, B., M. Jankowska, I. Hrynko & P. Kaczynski, 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188 (1): 51-70.
- Martínez-Romero, D., N. Alburquerque, J. M. Valverde, F. Guillén, S. Castillo, D. Valero & M. Serrano, 2006. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: a new edible coating. Postharvest Biology and Technology, 39 (1): 93-100.
- McGuire, R. G., 1992. Reporting of objective color measurements. HortScience, 27 (12): 1254-1255.
Merck, 2023. Merck Safe Data Sheets. (Web page: https://www.sigmaaldrich.com/TR/en/documents-search?tab=sds) (Date accessed: February, 2024).
- OECD (Organisation for Economic Co-operation and Development), 2008. Test no. 508: Magnitude of the pesticide residues in processed commodities, OECD guidelines for the testing of chemicals, Section 5. Paris: OECD Publishing. (Web page: https://doi.org/10.1787/9789264067622-en.OECD) (Date accessed: February, 2024).
- Osman, K. A., A. I. Al-Humaid, K. N. Al-Redhaiman & R. A. ElMergawi, 2014. Safety Methods for Chlorpyrifos Removal from Date Fruits and its Relation with Sugars, Phenolics and Antioxidant Capacity of Fruits. Journal of Food Science Technology, 51 (9): 1762-1772.
- Ozturk, B., E. Bektas, E. Aglar, O. Karakaya & S. Gun, 2018. Cracking and quality attributes of jujube fruits as affected by covering and pre-harvest Parka and GA3 treatments. Scientia Horticulturae, 240 (1): 65-71.
- Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. Journal of Enviromental Science and Health, Part B. 55 (1): 1-10.
- Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
- PPDB, 2023. Pesticide properties database, University of Hertfordshire. (Web page: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm) (Date accessed: December, 2023).
- Prior, R. L., 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78 (3): 570-578.
- Radwan, M. A., M. M. Abu-Elamayem, M. H. Shiboob & A. Abdel-Aal, 2005. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food and Chemical Toxicology, 43 (4): 553-557.
- Randhawa, M. A., M. N. Anjum, M. S. Butt, M. Yasin & M. Imran, 2014. Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17 (5): 978-986.
- Romano, G. S. & E. D. Cittadini, 2014. Postharvest colour dynamics of 'bing' and 'newstar' sweet cherry. Acta Horticulture, 1020 (1): 153-156
- SANTE, 2021. Analytical quality control and method validation procedures for pesticide residues analysis ın food and feed: SANTE 11312/2021. (Web page: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/) (Date accessed: December, 2023).
- Simon, J. Y., 2014. The Toxicology and Biochemistry of Insecticides. CRC Press, Taylor & Francis Group, London, UK, 380 pp.
- Simsek, M. & Ö. Süfer, 2021. Effect of pretreatments on refractance window drying, color kinetics and bioactive properties of white sweet cherries (Prunus avium L. stark gold). Journal of Food Processing and Preservation, 45 (11): e15895.
- Tarhan, S., G. Ergunes & O. F. Taser, 2006. Selection of chemical and thermal pretreatment combination to reduce the dehydration time of sour cherry (Prunus cerasus L.). Journal of Food Process Engineering, 29 (6): 651-663.
- Tiryaki, O. & B. Polat, 2023. Effects of washing treatments on pesticide residues in agricultural products. Gıda ve Yem Bilimi Teknolojisi Dergisi, 29 (1): 1-11.
- Tiryaki, O., 2016. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties. Journal Environmental Science and Health, Part B, 51 (10): 722-729.
- TUİK, 2021. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (accessed December, 2023) (in Turkish).
- Yalçın, M., N. Turgut, C. Gökbulut, S. Mermer, S. C. Sofuoğlu, V. Tari & C. Turgut, 2023. Removal of pesticide residues from apple and tomato cuticle. Environmental Science and Pollution Research, 30 (6): 15821-15829.
- Yang, T., J. Doherty, B. Zhao, A. J. Kinchla, J. M. Clark & L. He, 2017. Effectiveness of commercial and homemade washing agents in removing pesticide residues on and in apples. Journal of Agricultural and Food Chemistry, 65 (44): 9744-9752.
- Yildirim, A. N. & F. Koyuncu, 2010. The effect of gibberellic acid applications on the cracking rate and fruit quality in the ‘0900 Ziraat’sweet cherry cultivar. African Journal of Biotechnology, 9 (38): 6307-6311.