Effect of pepper variety on the degradation behaviors of pirimicarb
Yıl 2025,
Cilt: 49 Sayı: 1, 27 - 38
Esra Üzümlüoğlu
,
Tarık Balkan
Öz
In pesticide residue trials, selecting crop varieties that accurately represent agricultural practices and morphological diversity is essential to obtaining reliable and applicable results. Generally, widely grown varieties are given priority, but differences in pesticide residues may occur due to the morphological and physiological characteristics of plant varieties. This study investigated the degradation behaviors of pirimicarb in five pepper varieties in Tokat, Türkiye, in 2023. Pirimicarb, an insecticide registered against the peach aphid Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae), is widely used in peppers, tomatoes, sugar beets, and citrus fruits. While effective in pest control, pirimicarb inhibits acetylcholinesterase, posing neurotoxic risks to target and non-target organisms. Prolonged exposure may cause endocrine disruption and oxidative stress, making residue monitoring essential for food safety. Initially, a rapid and sensitive QuEChERS-LC-MS/MS method was verified to analyze pirimicarb in peppers. Analysis results show that pirimicarb in all varieties decreased below EU-MRL (0.5 mg kg-1) 24 hours after application. Significant variations in degradation rates and half-lives were observed among the varieties, attributed to their morphological and physiological differences. This research fills a critical gap by revealing the impact of varietal differences on the fate of pesticides, providing valuable data to optimize application strategies and ensure consumer safety.
Destekleyen Kurum
Tokat Gaziosmanpaşa University, Scientific Research Unit, Tokat, Türkiye, Grant Project No: 2023/54
Teşekkür
We are grateful to Tokat Gaziosmanpaşa University Scientific Research Projects Coordination Unit for financial support with Grant Project No: 2023/54.
Kaynakça
- Alavanja, M. C., J. A. Hoppin & F. Kamel, 2004. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annual Review of Public Health, 25 (2004): 155-197.
- Alister, C., M. Araya, K. Becerra, J. Saavedra & M. Kogan, 2017. Pre-harvest interval periods and their relation to fruit growth stages and pesticide formulations. Food Chemistry. 221 (2017): 548-554.
- Altuntaş, Ö., R. Küçük & M. Değirmenci, 2021. Investigation of promising genotypes selected from Arapgir bell pepper population in terms of their plant characteristics. Yuzuncu Yıl University Journal of Agricultural Sciences, 31 (1): 1-10 (in Turkish with abstract in English).
- Anonymous, 2022. Biber hastalık ve zararlılar ile mücadele. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/Uretici_Bilgi_Kosesi/Dokumanlar/biber_hastalik_ve_zararlilari_ile_mucadele.pdf) (Date accessed: December 2024) (in Turkish).
- Anonymous, 2024. Plant protection products database. (Web page: https://bku.tarimorman.gov.tr/Arama/Index?csrt=11430343323884281979) (Date accessed: December 2024) (in Turkish).
- Antonious, G. F., 2004. Residues and Half-Lives of Pyrethrins on Field Grown Pepper and Tomato. Journal of Environmental Science and Health Part B, 39 (4): 491-503.
- Archibald, B. A., K. R. Solomon & G. R. Stephenson, 1994. Estimating pirimicarb exposure to greenhouse workers using video imaging. Archives of Environmental Contamination and Toxicology, 27 (2): 126-129.
- Balkan, T. & K. Kara, 2023. Dissipation Kinetics of Some Pesticides Applied Singly or in Mixtures in/on Grape Leaf. Pest Management Science, 79 (3): 1234-1242.
- Balkan, T. & Ö. Yılmaz, 2022. Investigation of insecticide residues in potato grown in Türkiye by LC-MS/MS and GC-MS and health risk assessment. Turkish Journal of Entomology, 46 (4): 481-500.
- Balkan, T., K. Kara & M. Kızılarslan, 2024. Investigation of the dissipation kinetics of lufenuron in pepper grown under field conditions. Turkish Journal of Entomology, 48 (4): 439-448.
- Can, E. & M. R. Ulusoy, 2022. Adana ili açık alan biber yetiştiriciliğinde sorun olan Arthropoda Şubesi’ne bağlı zararlı ve yararlı türlerin saptanması. Çukurova Tarım ve Gıda Bilimleri Dergisi, 37 (1): 79-87 (in Turkish with abstract in English).
- Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
- Chen, M., J. Zhang, H. Yang, Y. Ma & H. Cui, 2020. Advances in pesticide residue analysis: Recent analytical methods and their applications. Food Chemistry, 315 (2020): 126158.
- Cönger, E., P. Aksu, N. Yigit, S. Dokumacı, Z. Baloğlu & A. A. Burçak, 2012. Studies on residue behaviour of certain pesticides used in vegetables. Plant Protection Bulletin, 52 (3): 273-288 87 (in Turkish with abstract in English).
- Damalas, C. A. & I. G. Eleftherohorinos, 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8 (5): 1402-1419.
- Donkor, A., P. Osei-Fosu, B. Dubey, R. Kingsford-Adaboh, C. Ziwu & I. Asante, 2016. Pesticide residues in fruits and vegetables: Risk assessment and monitoring. Environmental Science and Pollution Research, 23 (18): 18966-18987.
- EC, 2002. European Commission: Commission Directive 2002/63/EC of 11 July 2002 establishing Community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC. Official Journal of the European Communities, L 187 (45): 30-43.
- EFSA, 2015. European Food Safety Authority: Revisiting the International Estimate of Short-Term Intake (IESTI equations) used to estimate the acute exposure to pesticide residues via food. EFSA Supporting Publication, 12 (12): 1-81.
- EFSA, 2024. European Food Safety Authority: Peer review of the pesticide risk assessment of the active substance pirimicarb. EFSA Journal, 22 (10): 1-31.
- EPA, 2015. Standard operating procedure for using the nafta guidance to calculate representative half-life values and characterizing pesticide degradation. (Web page: https://www.epa.gov/sites/default/files/2015-08/documents/ftt_sop_using_nafta_guidance_version2.pdf) (Date accessed: September 2024).
- Eskenazi, B., A. R. Marks, A. Bradman, K. Harley, D. B. Barr, C. Johnson, N. Morga & N. P. Jewell, 2007. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environmental Health Perspectives, 115 (5): 792-798.
- EU-MRL, 2025. European Union (EU-MRL) Pesticides Database: Pesticide Residues MRLs. Directorate General for Health & Consumers. (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls) (Date accessed: January 2025)
- European Union, 2016. Commission Regulation (EU) 2016/71 of 26 January 2016 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for pirimicarb in or on certain products. Official Journal of the European Union, L 20 (59): 8-27.
- Feng-Shou, D., Y. Shuang, L. Xin-Gang, J. Jim-Peng, Z. Yong-Quan, L. Chong-Jiu & Y. Jim-Ren, 2008. Fate of fluazinam in pepper and soil after application. Agricultural Sciences in China, 7 (2): 193-199.
- Feng, Y., A. Zhang, Y. Bian, L. Liang & B. Zuo, 2021. Determination, residue analysis, dietary risk assessment, and processing of flupyradifurone and its metabolites in pepper under field conditions using LC-MS/MS. Biomedical Chromatography, 36 (4): e5312.
- Gupta, R. C., D. Chang, K. Nam & A. Bafila, 2020. ‘’Toxicological Profile of Carbamate Pesticides, 469-479’’. Handbook of Toxicology of Chemical Warfare Agents (Ed. Gupta R.C). Academic Press, 1198 pp.
- Hem, L., J. Choi, J. Park, M. Mamun, S. Cho, A. M. Abd El-Aty & J. Shim, 2011. Residual pattern of fenhexamid on pepper fruits grown under greenhouse conditions using HPLC and confirmation via tandem mass spectrometry. Food Chemistry, 126 (2011): 1533-1538.
- İş, M., 2019. Determination of residual amounts of kresoxim methyl, boscalid and tetraconazole in some peach varieties according to the waiting periods. Çanakkale Onsekiz Mart Üniversitesi, MSc Thesis, Çanakkale, 38 pp (in Turkish with abstract in English).
- Isci, G., O. Golge & B. Kabak, 2025. Infant and toddler health risks associated with pesticide residue exposure through fruit-and vegetable-based baby food. Journal of Food Composition and Analysis, 137: 106870.
- IUPAC, 2025. The PPDB-Pesticide properties database, international union of pure and applied chemistry. (Web page: http://sitem.herts.ac.uk/aeru/iupac/Reports/420.htm) (Date accessed: January 2025)
- Jacobsen, R. E., P. Fantke & S. Trapp, 2015. Analysing half-lives for pesticide dissipation in plants. SAR and QSAR in Environmental Research, 26 (4): 325-342.
- Jurewicz, J. & W. Hanke, 2008. Prenatal and childhood exposure to pesticides and neurobehavioral development: Review of epidemiological studies. International Journal of Occupational Medicine and Environmental Health, 21 (2): 121-132.
- Keklik, M., E. Odabas, O. Golge & B. Kabak, 2025a. Pesticide residue levels in strawberries and human health risk assessment. Journal of Food Composition and Analysis, 137 (2025): 106943.
- Keklik, M., O. Golge, M. Á. González-Curbelo & B. Kabak, 2025b. Pesticide residues in peaches and nectarines: Three-year monitoring data and risk assessment. Food Control, 172 (2025): 111141.
- Lehotay, S., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Residues and Trace Elements, 90 (2): 485-520.
- Liu, X., Y. Yang, Y. Cui, H. Zhu, X. Li, Z. Li, K. Zhang & D. Hu, 2014. Dissipation and residue of metalaxyl and cymoxanil in pepper and soil. Environmental Monitoring and Assessment, 186 (2014): 5307-5313.
- Lu, M., W. W. Jiang, J. Wang, Q. Jian, Y. Shen, X. Liu & X. Yu, 2014. Persistence and dissipation of chlorpyrifos in Brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLOS One, 9 (6): e101290.
- Malhat, F. M., 2017. Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arabian Journal of Chemistry, 10 (S1): 765-768.
- OECD, 2021. Test No. 509: Crop Field Trial, OECD Guidelines for the Testing of Chemicals, Section 5, OECD Publishing, Paris. (Web page: https://www.oecd.org/content/dam/oecd/en/publications/reports/2021/06/test-no-509-crop-field-trial_g1ghbba1/9789264076457-en.pdf) (Date accessed: February 2024)
- Piel, C., C, Pouchieu, L. Migault, B. Béziat, M. Boulanger, M. Bureau, C. Carles, A. Grüber, Y. Lecluse, V. Rondeau, X. Schwall, S. Tual, P. Lebailly & I. Baldi, 2019. Increased risk of central nervous system tumours with carbamate insecticide use in the prospective cohort AGRICAN. International Journal of Epidemiology, 48 (2): 512–526.
- Polat, B. & O. Tiryaki, 2024. Herbicide contamination of Batak plain agricultural soils and risk assessment. Journal of Environmental Science and Health Part B, 59 (5): 203-208.
- Rauh, V. A., R. Garfinkel, F. P. Perera, H. F. Andrews, L. Hoepner, D. B. Barr, R. Whitehead, D. Tang & R. W. Whyatt, 2006. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118 (6): e1845-e1859.
- Riva, C., M.B. Sokolowski, J. Normand, J.S.D.O. Santos & M.P. Halm Lemeille, 2018. Effect of Oral Exposure to the Acaricide Pirimicarb, a New Varroacide Candidate, on Apis Mellifera Feeding Rate. Pest Management Science, 74 (8): 1790-1797.
- SANTE, 2019. SANTE/2019/12752, On data requirements for setting maximum residue levels, comparability of residue trials and extrapolation of residue data on products from plant and animal origin, 2-55. (Web page: https://food.ec.europa.eu/document/download/d0729db4-fe2f-4750-b3d4-f7aa913c51d1_en?filename=pesticides_mrl_guidelines_app-d.pdf) (Date accessed: September 2024).
- SANTE, 2021. SANTE/11312/2021, Analytical quality control and method validation procedures for pesticide residues analysis in food and feed, 1-55. (Web page: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf) (Date accessed: April 2022).
- Şarkaya Ahat, C., 2015. Domates ve Biberde Ardışık Pestisit Uygulamasının Pestisitlerin Parçalanma Kinetiğine Olan Etkisi. Adnan Menderes Üniversitesi, (Unpublished) MSc Thesis, Aydın, 64 pp (in Turkish with abstract in English).
- Serbes, E. B. & O. Tiryaki, 2023. Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. Turkish Journal of Entomology, 47 (1): 73-85.
- Sharma, K. K., I. Mukherjee, B. Singh, S. K. Sahoo, N. S. Parihar, B. N. Sharma, V. D. Kale, R. V. Nakat, A. R. Walunj, S. Mohapatra, A. K. Ahuja, D. Sharma, G. Singh, R. Noniwal & S. Devi, 2014. Residual behavior and risk assessment of flubendiamide on tomato at different agro-climatic conditions in India. Environmental Monitoring and Assessment, 186 (11): 7673-7682.
- Solomon, G., 2000. Pesticides and human health: A resource for health care professionals. University of California, San Francisco.
- Thongprakaisang, S., K. Thiantanaviboon, N. Rangkadilok, T. Suriyo & J. Satayavivad, 2013. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59 (2013): 129-136.
- TUIK, 2022. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: January 2025) (in Turkish).
- TUIK, 2024a. Foreign Trade Statistics. (Web page: https://biruni.tuik.gov.tr/disticaretapp/disticaret.zul?param1=25¶m2=0&sitcrev=0&isicrev=0&sayac=5802) (Date accessed: December 2024) (in Turkish).
- TUIK, 2024b. Türkiye Health Interview Survey. (Web page: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=WEBW229PP/91tMV2m71fU6pRWq2F1ZD/lzOFFk0bNDi2rjAC8QDCRN62nr2M3n1K) (Date accessed: September 2024) (in Turkish).
- WHO, 2010. Public health impact of pesticides used in agriculture. World Health Organization. (Web page: https://apps.who.int/iris/handle/10665/39772) (Date accessed: September 2024).
- Whyatt, R. M., R. Garfinkel, L. A. Hoepner, D. Holmes, M. Borjas & M. K. Williams, 2007. Within- and between-home variability in indoor air insecticide levels during pregnancy among an inner-city cohort from New York City. Environmental Health Perspectives, 115 (3): 383-390.
- Yelaldı, A., K. Kara, & T. Balkan, 2024. Investigation of insecticide residues in fig and health risk assessment. Turkish Journal of Entomology, 48 (3): 319-326.
- Zhang, W., H. Song, Y. Liu & T. Wang, 2022. Oxidative stress and genotoxicity of carbamate pesticides in mammalian cells: A review. Chemosphere, 287 (2022): 132216
- Zhou, Q., J. Yang & X. Liu, 1996. Loss of pirimicarb residues from contaminated fabrics. Bulletin of Environmental Contamination and Toxicology, 57 (1): 29-33.
Biber çeşitlerinin pirimicarb'ın bozunma davranışları üzerindeki etkisi
Yıl 2025,
Cilt: 49 Sayı: 1, 27 - 38
Esra Üzümlüoğlu
,
Tarık Balkan
Öz
Pestisit kalıntısı denemelerinde, tipik tarımsal uygulamaları ve morfolojik çeşitliliği doğru bir şekilde temsil eden ürün çeşitlerinin seçilmesi, güvenilir ve uygulanabilir sonuçlar elde etmek için önemlidir. Genellikle yaygın olarak yetiştirilen çeşitlere öncelik verilmekle birlikte, bitki çeşitlerinin morfolojik ve fizyolojik özellikleri nedeniyle pestisit kalıntılarında farklılıklar meydana gelebilir. Türkiye'nin Tokat ilinde 2023 yılında yürütülen bu çalışmada beş biber çeşidinde pirimikarb’ın bozunma davranışları araştırılmıştır. Şeftali yaprak bitine, Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae) karşı tescilli bir insektisit olan pirimicarb, biber, domates, şeker pancarı ve turunçgillerde yaygın olarak kullanılmaktadır. Pirimicarb zararlı kontrolünde etkili olmasına rağmen asetilkolinesterazı inhibe ederek hedef ve hedef olmayan organizmalar için nörotoksik riskler oluşturur. Uzun süreli maruziyet endokrin bozulmasına ve oksidatif strese yol açabilir, bu da gıda güvenliği için kalıntı izlemeyi zorunlu hale getirir. Başlangıçta, biber örneklerinde pirimicarb’ı analiz etmek için hızlı ve hassas bir QuEChERS-LC-MS/MS yöntemi doğrulanmıştır. Analiz sonuçları, tüm çeşitlerde pirimicarb’ın uygulamadan 24 saat sonra AB-MRL (0,5 mg kg-1) altına indiğini göstermektedir. Farklı biber çeşitleri arasında bozunma oranları ve yarı ömürlerde önemli farklılıklar gözlemlenmiştir. Bu farklılıkların, çeşitlerin morfolojik ve fizyolojik özelliklerinden kaynaklandığı düşünülmektedir. Bu araştırma, çeşit farklılıklarının pestisitlerin akıbeti üzerindeki etkisini ortaya koyarak, pestisit uygulama stratejilerini optimize etmek ve tüketici güvenliğini sağlamak için değerli veriler sağlayarak kritik bir boşluğu doldurmaktadır.
Kaynakça
- Alavanja, M. C., J. A. Hoppin & F. Kamel, 2004. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annual Review of Public Health, 25 (2004): 155-197.
- Alister, C., M. Araya, K. Becerra, J. Saavedra & M. Kogan, 2017. Pre-harvest interval periods and their relation to fruit growth stages and pesticide formulations. Food Chemistry. 221 (2017): 548-554.
- Altuntaş, Ö., R. Küçük & M. Değirmenci, 2021. Investigation of promising genotypes selected from Arapgir bell pepper population in terms of their plant characteristics. Yuzuncu Yıl University Journal of Agricultural Sciences, 31 (1): 1-10 (in Turkish with abstract in English).
- Anonymous, 2022. Biber hastalık ve zararlılar ile mücadele. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/Uretici_Bilgi_Kosesi/Dokumanlar/biber_hastalik_ve_zararlilari_ile_mucadele.pdf) (Date accessed: December 2024) (in Turkish).
- Anonymous, 2024. Plant protection products database. (Web page: https://bku.tarimorman.gov.tr/Arama/Index?csrt=11430343323884281979) (Date accessed: December 2024) (in Turkish).
- Antonious, G. F., 2004. Residues and Half-Lives of Pyrethrins on Field Grown Pepper and Tomato. Journal of Environmental Science and Health Part B, 39 (4): 491-503.
- Archibald, B. A., K. R. Solomon & G. R. Stephenson, 1994. Estimating pirimicarb exposure to greenhouse workers using video imaging. Archives of Environmental Contamination and Toxicology, 27 (2): 126-129.
- Balkan, T. & K. Kara, 2023. Dissipation Kinetics of Some Pesticides Applied Singly or in Mixtures in/on Grape Leaf. Pest Management Science, 79 (3): 1234-1242.
- Balkan, T. & Ö. Yılmaz, 2022. Investigation of insecticide residues in potato grown in Türkiye by LC-MS/MS and GC-MS and health risk assessment. Turkish Journal of Entomology, 46 (4): 481-500.
- Balkan, T., K. Kara & M. Kızılarslan, 2024. Investigation of the dissipation kinetics of lufenuron in pepper grown under field conditions. Turkish Journal of Entomology, 48 (4): 439-448.
- Can, E. & M. R. Ulusoy, 2022. Adana ili açık alan biber yetiştiriciliğinde sorun olan Arthropoda Şubesi’ne bağlı zararlı ve yararlı türlerin saptanması. Çukurova Tarım ve Gıda Bilimleri Dergisi, 37 (1): 79-87 (in Turkish with abstract in English).
- Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
- Chen, M., J. Zhang, H. Yang, Y. Ma & H. Cui, 2020. Advances in pesticide residue analysis: Recent analytical methods and their applications. Food Chemistry, 315 (2020): 126158.
- Cönger, E., P. Aksu, N. Yigit, S. Dokumacı, Z. Baloğlu & A. A. Burçak, 2012. Studies on residue behaviour of certain pesticides used in vegetables. Plant Protection Bulletin, 52 (3): 273-288 87 (in Turkish with abstract in English).
- Damalas, C. A. & I. G. Eleftherohorinos, 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8 (5): 1402-1419.
- Donkor, A., P. Osei-Fosu, B. Dubey, R. Kingsford-Adaboh, C. Ziwu & I. Asante, 2016. Pesticide residues in fruits and vegetables: Risk assessment and monitoring. Environmental Science and Pollution Research, 23 (18): 18966-18987.
- EC, 2002. European Commission: Commission Directive 2002/63/EC of 11 July 2002 establishing Community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC. Official Journal of the European Communities, L 187 (45): 30-43.
- EFSA, 2015. European Food Safety Authority: Revisiting the International Estimate of Short-Term Intake (IESTI equations) used to estimate the acute exposure to pesticide residues via food. EFSA Supporting Publication, 12 (12): 1-81.
- EFSA, 2024. European Food Safety Authority: Peer review of the pesticide risk assessment of the active substance pirimicarb. EFSA Journal, 22 (10): 1-31.
- EPA, 2015. Standard operating procedure for using the nafta guidance to calculate representative half-life values and characterizing pesticide degradation. (Web page: https://www.epa.gov/sites/default/files/2015-08/documents/ftt_sop_using_nafta_guidance_version2.pdf) (Date accessed: September 2024).
- Eskenazi, B., A. R. Marks, A. Bradman, K. Harley, D. B. Barr, C. Johnson, N. Morga & N. P. Jewell, 2007. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environmental Health Perspectives, 115 (5): 792-798.
- EU-MRL, 2025. European Union (EU-MRL) Pesticides Database: Pesticide Residues MRLs. Directorate General for Health & Consumers. (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls) (Date accessed: January 2025)
- European Union, 2016. Commission Regulation (EU) 2016/71 of 26 January 2016 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for pirimicarb in or on certain products. Official Journal of the European Union, L 20 (59): 8-27.
- Feng-Shou, D., Y. Shuang, L. Xin-Gang, J. Jim-Peng, Z. Yong-Quan, L. Chong-Jiu & Y. Jim-Ren, 2008. Fate of fluazinam in pepper and soil after application. Agricultural Sciences in China, 7 (2): 193-199.
- Feng, Y., A. Zhang, Y. Bian, L. Liang & B. Zuo, 2021. Determination, residue analysis, dietary risk assessment, and processing of flupyradifurone and its metabolites in pepper under field conditions using LC-MS/MS. Biomedical Chromatography, 36 (4): e5312.
- Gupta, R. C., D. Chang, K. Nam & A. Bafila, 2020. ‘’Toxicological Profile of Carbamate Pesticides, 469-479’’. Handbook of Toxicology of Chemical Warfare Agents (Ed. Gupta R.C). Academic Press, 1198 pp.
- Hem, L., J. Choi, J. Park, M. Mamun, S. Cho, A. M. Abd El-Aty & J. Shim, 2011. Residual pattern of fenhexamid on pepper fruits grown under greenhouse conditions using HPLC and confirmation via tandem mass spectrometry. Food Chemistry, 126 (2011): 1533-1538.
- İş, M., 2019. Determination of residual amounts of kresoxim methyl, boscalid and tetraconazole in some peach varieties according to the waiting periods. Çanakkale Onsekiz Mart Üniversitesi, MSc Thesis, Çanakkale, 38 pp (in Turkish with abstract in English).
- Isci, G., O. Golge & B. Kabak, 2025. Infant and toddler health risks associated with pesticide residue exposure through fruit-and vegetable-based baby food. Journal of Food Composition and Analysis, 137: 106870.
- IUPAC, 2025. The PPDB-Pesticide properties database, international union of pure and applied chemistry. (Web page: http://sitem.herts.ac.uk/aeru/iupac/Reports/420.htm) (Date accessed: January 2025)
- Jacobsen, R. E., P. Fantke & S. Trapp, 2015. Analysing half-lives for pesticide dissipation in plants. SAR and QSAR in Environmental Research, 26 (4): 325-342.
- Jurewicz, J. & W. Hanke, 2008. Prenatal and childhood exposure to pesticides and neurobehavioral development: Review of epidemiological studies. International Journal of Occupational Medicine and Environmental Health, 21 (2): 121-132.
- Keklik, M., E. Odabas, O. Golge & B. Kabak, 2025a. Pesticide residue levels in strawberries and human health risk assessment. Journal of Food Composition and Analysis, 137 (2025): 106943.
- Keklik, M., O. Golge, M. Á. González-Curbelo & B. Kabak, 2025b. Pesticide residues in peaches and nectarines: Three-year monitoring data and risk assessment. Food Control, 172 (2025): 111141.
- Lehotay, S., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Residues and Trace Elements, 90 (2): 485-520.
- Liu, X., Y. Yang, Y. Cui, H. Zhu, X. Li, Z. Li, K. Zhang & D. Hu, 2014. Dissipation and residue of metalaxyl and cymoxanil in pepper and soil. Environmental Monitoring and Assessment, 186 (2014): 5307-5313.
- Lu, M., W. W. Jiang, J. Wang, Q. Jian, Y. Shen, X. Liu & X. Yu, 2014. Persistence and dissipation of chlorpyrifos in Brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLOS One, 9 (6): e101290.
- Malhat, F. M., 2017. Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arabian Journal of Chemistry, 10 (S1): 765-768.
- OECD, 2021. Test No. 509: Crop Field Trial, OECD Guidelines for the Testing of Chemicals, Section 5, OECD Publishing, Paris. (Web page: https://www.oecd.org/content/dam/oecd/en/publications/reports/2021/06/test-no-509-crop-field-trial_g1ghbba1/9789264076457-en.pdf) (Date accessed: February 2024)
- Piel, C., C, Pouchieu, L. Migault, B. Béziat, M. Boulanger, M. Bureau, C. Carles, A. Grüber, Y. Lecluse, V. Rondeau, X. Schwall, S. Tual, P. Lebailly & I. Baldi, 2019. Increased risk of central nervous system tumours with carbamate insecticide use in the prospective cohort AGRICAN. International Journal of Epidemiology, 48 (2): 512–526.
- Polat, B. & O. Tiryaki, 2024. Herbicide contamination of Batak plain agricultural soils and risk assessment. Journal of Environmental Science and Health Part B, 59 (5): 203-208.
- Rauh, V. A., R. Garfinkel, F. P. Perera, H. F. Andrews, L. Hoepner, D. B. Barr, R. Whitehead, D. Tang & R. W. Whyatt, 2006. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118 (6): e1845-e1859.
- Riva, C., M.B. Sokolowski, J. Normand, J.S.D.O. Santos & M.P. Halm Lemeille, 2018. Effect of Oral Exposure to the Acaricide Pirimicarb, a New Varroacide Candidate, on Apis Mellifera Feeding Rate. Pest Management Science, 74 (8): 1790-1797.
- SANTE, 2019. SANTE/2019/12752, On data requirements for setting maximum residue levels, comparability of residue trials and extrapolation of residue data on products from plant and animal origin, 2-55. (Web page: https://food.ec.europa.eu/document/download/d0729db4-fe2f-4750-b3d4-f7aa913c51d1_en?filename=pesticides_mrl_guidelines_app-d.pdf) (Date accessed: September 2024).
- SANTE, 2021. SANTE/11312/2021, Analytical quality control and method validation procedures for pesticide residues analysis in food and feed, 1-55. (Web page: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf) (Date accessed: April 2022).
- Şarkaya Ahat, C., 2015. Domates ve Biberde Ardışık Pestisit Uygulamasının Pestisitlerin Parçalanma Kinetiğine Olan Etkisi. Adnan Menderes Üniversitesi, (Unpublished) MSc Thesis, Aydın, 64 pp (in Turkish with abstract in English).
- Serbes, E. B. & O. Tiryaki, 2023. Determination of insecticide residues in “Bayramiç Beyazı” nectarines and their risk analysis for consumers. Turkish Journal of Entomology, 47 (1): 73-85.
- Sharma, K. K., I. Mukherjee, B. Singh, S. K. Sahoo, N. S. Parihar, B. N. Sharma, V. D. Kale, R. V. Nakat, A. R. Walunj, S. Mohapatra, A. K. Ahuja, D. Sharma, G. Singh, R. Noniwal & S. Devi, 2014. Residual behavior and risk assessment of flubendiamide on tomato at different agro-climatic conditions in India. Environmental Monitoring and Assessment, 186 (11): 7673-7682.
- Solomon, G., 2000. Pesticides and human health: A resource for health care professionals. University of California, San Francisco.
- Thongprakaisang, S., K. Thiantanaviboon, N. Rangkadilok, T. Suriyo & J. Satayavivad, 2013. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59 (2013): 129-136.
- TUIK, 2022. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: January 2025) (in Turkish).
- TUIK, 2024a. Foreign Trade Statistics. (Web page: https://biruni.tuik.gov.tr/disticaretapp/disticaret.zul?param1=25¶m2=0&sitcrev=0&isicrev=0&sayac=5802) (Date accessed: December 2024) (in Turkish).
- TUIK, 2024b. Türkiye Health Interview Survey. (Web page: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=WEBW229PP/91tMV2m71fU6pRWq2F1ZD/lzOFFk0bNDi2rjAC8QDCRN62nr2M3n1K) (Date accessed: September 2024) (in Turkish).
- WHO, 2010. Public health impact of pesticides used in agriculture. World Health Organization. (Web page: https://apps.who.int/iris/handle/10665/39772) (Date accessed: September 2024).
- Whyatt, R. M., R. Garfinkel, L. A. Hoepner, D. Holmes, M. Borjas & M. K. Williams, 2007. Within- and between-home variability in indoor air insecticide levels during pregnancy among an inner-city cohort from New York City. Environmental Health Perspectives, 115 (3): 383-390.
- Yelaldı, A., K. Kara, & T. Balkan, 2024. Investigation of insecticide residues in fig and health risk assessment. Turkish Journal of Entomology, 48 (3): 319-326.
- Zhang, W., H. Song, Y. Liu & T. Wang, 2022. Oxidative stress and genotoxicity of carbamate pesticides in mammalian cells: A review. Chemosphere, 287 (2022): 132216
- Zhou, Q., J. Yang & X. Liu, 1996. Loss of pirimicarb residues from contaminated fabrics. Bulletin of Environmental Contamination and Toxicology, 57 (1): 29-33.