Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology

Yıl 2025, Cilt: 49 Sayı: 2, 187 - 200, 25.06.2025
https://doi.org/10.16970/entoted.1667614

Öz

Root-knot nematodes (RKNs) cause significant yield losses in agriculture. Environmentally friendly bioproducts are important components of sustainable nematode management. This study evaluated the efficacy of two commercial Bacillus bioproducts, Bacillus amyloliquefaciens MBI 600 (Bioproduct-I) and Bacillus subtilis QST 713 (Bioproduct-II), against Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae), a major RKN species, on tomato plants. The trial, conducted in 2024 at Bolu Abant İzzet Baysal University, Faculty of Agriculture, Department of Plant Protection, assessed root gall index, number of second-stage juveniles (J2) and number of egg masses in pot experiments at seed and seedling stages. The dose of Bioproduct-I was optimized using response surface methodology (RSM) and design of experiments (DOE), with results visualized using Pareto and normal plots. The 1000 ml/ha dose of Bioproduct-I was characterized by the lowest root gall index (2.37 in seed, 2.75 in seedling) and the lowest number of J2 (382.5 in seed, 415.0 in seedling). However, higher doses showed reduced efficacy, indicating that increasing concentrations did not increase biological activity. This study highlights the potential of Bacillus spp. for biological control and demonstrates the usefulness of statistical tools in optimizing Bioproduct applications against RKN.

Kaynakça

  • Aballay, E., S. Prodon, P. Correa & J. Allende, 2020. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of grapevine. Crop Protection, 131: 105103 (1-6).
  • Abd-Elgawad, M. M., 2024. Upgrading strategies for managing nematode pests on profitable crops. Plants, 13 (11): 1558 (1-20).
  • Abd-Elgawad, M., S. El-Mougy, M. Abdel-Kader, N. El-Gamal & M. Mohamed, 2010. Protective treatments against soilborne pathogens in citrus orchards. Journal of Plant Protection Research, 50 (4): 477-484.
  • Akhtar, A., M. I. Hisamuddin & S. R. Abbasi, 2012. Plant growth promoting rhizobacteria: an overview. Journal of Natural Products and Plant Resources, 2 (1): 19-31.
  • Ali, S. A. & M. Aasim, 2024. Response surface methodology and artificial intelligence modeling for in vitro regeneration of Brazilian micro sword (Lilaeopsis brasiliensis). Plant Cell Tissue and Organ Culture, 157 (1): 10 (1-13).
  • Azargohar, R. & A. K. Dalai, 2005. Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and Mesoporous Materials, 85 (3): 219-225.
  • Baçaoui, A., A. Yaacoubi, A. Dahbi, C. Bennouna, R. P. T. Luu, F. J. Maldonado-Hodar & C. Moreno-Castilla, 2001. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 39 (3): 425-432.
  • Bhat, A. A., A. Shakeel, S. Waqar, Z. A. Handoo & A. A. Khan, 2023. Microbes vs. nematodes: insights into biocontrol through antagonistic organisms to control root-knot nematodes. Plants, 12 (3): 451 (1-21).
  • Brar, S. K., M. Verma, R. D. Tyagi & J. R. Valéro, 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based bioproducts. Process Biochemistry, 41 (2): 323-342.
  • Coyne, D. L., L. Cortada, J. J. Dalzell, A. O. Claudius-Cole, S. Haukeland, N. Luambano & H. Talwana, 2018. Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annual Review of Phytopathology, 56 (1): 381-403.
  • Decraemer, W. & D. J. Hunt, 2006. “Structure and Classification, 4-32”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). CABI Publishing, London, 447 pp.
  • dos Santos, H. M., C. de S. Varize, C. A. Valença, F. C. Dossi, M. V. de Aragão Batista, R. P. Fernandes, P. Severino, E. B. Souto, S. S. Dolabella & M. C. Mendonça, 2024. Use of agro-industrial bio-waste for the growth and production of a previously isolated Bacillus thuringiensis strain. Beni-Suef University Journal of Basic and Applied Sciences, 13 (1): 5 (1-28).
  • Elling, A. A., 2013. Major emerging problems with minor Meloidogyne species. Phytopathology, 103 (11): 1092-1102.
  • Engelbrecht, G., I. Horak, P. J. Jansen van Rensburg & S. Claassens, 2018. Bacillus-based bionematicides: development, modes of action and commercialization. Biocontrol Science and Technology, 28 (7): 629-653.
  • Fayad, N., J. Abboud, F. Driss, N. Louka & M. Kallassy Awad, 2022. Optimization of culture conditions and wheat bran class selection in the production of Bacillus thuringiensis based bioproducts. Fermentation, 8 (12): 666 (1-13).
  • Gani, A., M. Asjad, F. Talib, Z. A. Khan & A. N. Siddiquee, 2021. Identification, ranking and prioritization of vital environmental sustainability indicators in manufacturing sector using Pareto analysis cum best-worst method. International Journal of Sustainable Engineering, 14 (3): 226-244.
  • Gattoni, K. M., S. W. Park & K. S. Lawrence, 2023. Evaluation of the mechanism of action of Bacillus spp. to manage Meloidogyne incognita with split root assay, RT-qPCR and qPCR. Frontiers in Plant Science, 13: 1079109 (1-13).
  • Hooper, D. J., 1986. “Extraction of Nematodes from Plant Material, 59-80”. In: Laboratory Methods for Work with Plants and Soil Nematodes (Eds. J. F. Southey). Ministry of Agriculture, Fisheries and Food, London, UK, 202 pp.
  • Hynes, R. K. & S. M. Boyetchko, 2006. Research initiatives in the art and science of bioproduct formulations. Soil Biology and Biochemistry, 38 (4): 845-849.
  • İmren, M., A. S. Koca & A. A. Dababat, 2019. Identification of Heterodera latipons using PCR with sequence characterized amplified region (SCAR) primers. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5 (1): 90-95.
  • Imren, M., L. Waeyenberge, A. Sami Koca, N. Duman, Ş. Yildiz & A. A. Dababat, 2017. Genetic variation and population dynamics of the cereal cyst nematode, Heterodera filipjevi in wheat areas of Bolu, Turkey. Tropical Plant Pathology, 42: 362-369.
  • Jones, J. T., A. Haegeman, E. G. Danchin, H. S. Gaur, J. Helder, M. G. Jones & R. N. Perry, 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14 (9): 946-961.
  • Junaid, J. M., N. A. Dar, T. A. Bhat, A. H. Bhat & M. A. Bhat, 2013. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant and Animal Sciences, 1 (2): 39-57.
  • Karssen, G. & M. Moens, 2006. “Root-Knot Nematodes, 59-90”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). CAB International, Wallingford, UK, 447 pp.
  • Kavitha, P. G., E. I. Jonathan & S. Nakkeeran, 2012. Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematologia Mediterranea, 40 (2): 203-206.
  • Khalil, M. S. H., A. F. G. Allam & A. T. Barakat, 2012. Nematicidal activity of some bioproduct agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research, 52 (1): 47-52.
  • Khalil, M. S., 2013. The potential of five ecobiorational products on the reproduction of root-knot nematode and plant growth. eScience Journal of Plant Pathology, 2 (2): 84-91.
  • Kumar, S. P. & R. Banerjee, 2013. Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology. Indian Journal of Experimental Biology, 51 (11): 979-983.
  • Kumar, S. P. J. & R. Banerjee, 2019. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrasonics Sonochemistry, 52: 25-32.
  • Linden, R., G. G. Ortega, P. R. Petrovick & V. L. Bassani, 2000. Response surface analysis applied to the preparation of tablets containing a high concentration of vegetable spray-dried extract. Drug Development and Industrial Pharmacy, 26 (4): 441-446.
  • Machado, A. C., 2022. Bionematicides in Brazil: an emerging and challenging market. Revista Anual de Patologia de Plantas, 28: 35-49.
  • Meyer, S. L., 2003. USDA-ARS research programs on microbes for management of plant‐parasitic nematodes. Pest Management Science, 59 (6‐7): 665-670.
  • Mitreva, M., M. L. Blaxter, D. M. Bird & J. P. McCarter, 2005. Comparative genomics of nematodes. Trends in Genetics, 21 (10): 573-581.
  • Nicol, J. M., S. J. Turner, D. L. Coyne, L. D. Nijs, S. Hockland & Z. T. Maafi, 2011. “Current Nematode Threats to World Agriculture, 21-43”. In: Genomics and Molecular Genetics of Plant-Nematode Interactions (Eds. J. Jones, G. Gheysen & C. Fenoll). Springer, Germany, 557 pp.
  • Nwabueze, T. U., 2010. Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimization in the food systems. International Journal of Food Science and Technology, 45 (9): 1768-1776.
  • Pires, D., C. S. Vicente, E. Menéndez, J. M. Faria, L. Rusinque, M. J. Camacho & M. L. Inácio, 2022. The fight against plant-parasitic nematodes: current status of bacterial and fungal biocontrol agents. Pathogens, 11 (10): 1178 (1-22).
  • Ren, Y., B. R. Linter, R. Linforth & T. J. Foster, 2020. A comprehensive investigation of gluten-free bread dough rheology, proving and baking performance, and bread qualities by response surface design and principal component analysis. Food Function, 11 (6): 5333-5345.
  • Riga, E., 2011. The effects of Brassica green manures on plant parasitic and free-living nematodes used in combination with reduced rates of synthetic nematicides. Journal of Nematology, 43 (2): 119-121.
  • Shi, Q., J. Zhang, Q. Fu, G. Hao, C. Liang, F. Duan, H. Zhao & W. Song, 2024. Biocontrol efficacy and induced resistance of Paenibacillus polymyxa J2-4 against Meloidogyne incognita infection in cucumber. Phytopathology, 114 (3): 538-548.
  • Siddiqui, Z. A. & I. Mahmood, 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology, 69 (2): 167-179.
  • Sikandar, A., M. Y. Zhang, Y. Y. Wang, X. F. Zhu, X. Y. Liu, H. Y. Fan & Y. X. Duan, 2020. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Applied Ecology and Environmental Research, 18 (1): 1679-1690.
  • Singh, S. & N. Mathur, 2010. Biological control of root-knot nematode, Meloidogyne incognita infesting tomato. Biocontrol Science and Technology, 20 (8): 865-874.
  • Swain, S., B. R. Jena & S. Beg, 2021. “Design of Experiments for the Development of Biotechnology Products, 171-178” In: Design of Experiments for Pharmaceutical Product Development: Volume II: Applications and Practical Case Studies (Eds. S. Beg). Springer, Singapore, 188 pp.
  • Talwana, H., Z. Sibanda, W. Wanjohi, W. Kimenju, N. Luambano-Nyoni, C. Massawe & B. R. Kerry, 2016. Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages. Pest Management Science, 72 (2): 226-245.
  • Tian, B., J. Yang & K. Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61 (2): 197-213.
  • Tian, X. L., X. M. Zhao, S. Y. Zhao, J. L. Zhao & Z. C. Mao, 2022. The biocontrol functions of Bacillus velezensis strain Bv-25 against Meloidogyne incognita. Frontiers in Microbiology, 13: 843041 (1-11).
  • Timmusk, S., L. Behers, J. Muthoni, A. Muraya & A. C. Aronsson, 2017. Perspectives and challenges of microbial application in agriculture. Frontiers in Plant Science, 8: 49 (1-10).
  • Wesemael, W. M. L., N. Viaene & M. Moens, 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13 (1): 3-16.
  • Xiang, N., K. S. Lawrence, J. W. Kloepper, P. A. Donald, J. A. McInroy & G. W. Lawrence, 2017. Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Disease, 101 (5): 774-784.
  • Xu, X., G. Huang, L. Liu & C. He, 2019. A factorial environment-oriented input-output model for diagnosing urban air pollution. Journal of Cleaner Production, 237: 117731 (1-12).
  • Yang, J., L. Liang, J. Li & K. Zhang, 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97 (16): 7081-7095.
  • Ye, S., Y. Ma, S. Zhou, R. Yan, Z. Yang & Z. Ding, 2024. Biocontrol potential of Priestia megaterium YB-3 against Meloidogyne graminicola and its impact on the rhizosphere microbial community. Journal of Pest Science, 97 (4): 2237-2256.
  • Yılmaz, İ., F. Ulaş & M. Imren, 2025. The effect of some biopesticides on the root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) damaging tomato plants. Turkish Journal of Entomology, 49 (1): 19-26.
  • Zeck, W. M., 1971. A rating scheme for field evaluation of root-knot nematode infestation. Pflanzenschutz Nachrichten, 10: 141-144.
  • Zhang, Q., Y. Liu, P. R. Harvey, B. E. Stummer, J. Yang & Z. Ji, 2023. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. Journal of Applied Microbiology, 134 (5): lxad101 (1-22).

Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) kontrolü için Bacillus bazlı bir biyoürünün yanıt yüzeyi metodolojisi kullanılarak optimizasyonu

Yıl 2025, Cilt: 49 Sayı: 2, 187 - 200, 25.06.2025
https://doi.org/10.16970/entoted.1667614

Öz

Kök-ur nematodları tarımda önemli verim kayıplarına yol açmaktadır. Çevre dostu biyolojik ürünler, sürdürülebilir nematod yönetiminde önemli bir rol oynamaktadır. Bu çalışmada, iki ticari Bacillus tabanlı biyolojik ürünün, Bacillus amyloliquefaciens MBI 600 (Bioproduct-I) ve Bacillus subtilis QST 713 (Bioproduct-II), domates bitkilerinde önemli bir kök-ur nematodu türü olan Meloidogyne incognita'ya (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) karşı etkinliği değerlendirilmiştir. Bolu Abant İzzet Baysal Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü'nde 2024 yılında yapılan denemelerde, tohum ve fide aşamalarındaki saksı deneylerinde kök ur indeksi, ikinci dönem larva (J2) sayısı ve yumurta paketi sayısı değerlendirilmiştir. Bioproduct-I dozu, yanıt yüzeyi metodolojisi (YYM) ve deney tasarımı (DT) kullanılarak optimize edilmiş ve sonuçlar Pareto ve normal plot grafikleri ile görselleştirilmiştir. Bioproduct-I'in 1000 ml/ha dozu, en düşük kök gal indeksi (tohumda 2.37, fidede 2.75) ve en düşük ikinci dönem larva (J2) sayısı (tohumda 382.5, fidede 415.0) ile belirlenmiştir. Daha yüksek dozlar, biyolojik aktiviteyi artırmamış, daha düşük etkinlik göstermiştir. Bu çalışma, Bacillus spp. türlerinin biyolojik mücadele potansiyelini ve kök-ur nematodlarına karşı biyolojik ürün uygulamalarının optimize edilmesinde istatistiksel araçların yararlılığını ortaya koymaktadır.

Kaynakça

  • Aballay, E., S. Prodon, P. Correa & J. Allende, 2020. Assessment of rhizobacterial consortia to manage plant parasitic nematodes of grapevine. Crop Protection, 131: 105103 (1-6).
  • Abd-Elgawad, M. M., 2024. Upgrading strategies for managing nematode pests on profitable crops. Plants, 13 (11): 1558 (1-20).
  • Abd-Elgawad, M., S. El-Mougy, M. Abdel-Kader, N. El-Gamal & M. Mohamed, 2010. Protective treatments against soilborne pathogens in citrus orchards. Journal of Plant Protection Research, 50 (4): 477-484.
  • Akhtar, A., M. I. Hisamuddin & S. R. Abbasi, 2012. Plant growth promoting rhizobacteria: an overview. Journal of Natural Products and Plant Resources, 2 (1): 19-31.
  • Ali, S. A. & M. Aasim, 2024. Response surface methodology and artificial intelligence modeling for in vitro regeneration of Brazilian micro sword (Lilaeopsis brasiliensis). Plant Cell Tissue and Organ Culture, 157 (1): 10 (1-13).
  • Azargohar, R. & A. K. Dalai, 2005. Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and Mesoporous Materials, 85 (3): 219-225.
  • Baçaoui, A., A. Yaacoubi, A. Dahbi, C. Bennouna, R. P. T. Luu, F. J. Maldonado-Hodar & C. Moreno-Castilla, 2001. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 39 (3): 425-432.
  • Bhat, A. A., A. Shakeel, S. Waqar, Z. A. Handoo & A. A. Khan, 2023. Microbes vs. nematodes: insights into biocontrol through antagonistic organisms to control root-knot nematodes. Plants, 12 (3): 451 (1-21).
  • Brar, S. K., M. Verma, R. D. Tyagi & J. R. Valéro, 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based bioproducts. Process Biochemistry, 41 (2): 323-342.
  • Coyne, D. L., L. Cortada, J. J. Dalzell, A. O. Claudius-Cole, S. Haukeland, N. Luambano & H. Talwana, 2018. Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annual Review of Phytopathology, 56 (1): 381-403.
  • Decraemer, W. & D. J. Hunt, 2006. “Structure and Classification, 4-32”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). CABI Publishing, London, 447 pp.
  • dos Santos, H. M., C. de S. Varize, C. A. Valença, F. C. Dossi, M. V. de Aragão Batista, R. P. Fernandes, P. Severino, E. B. Souto, S. S. Dolabella & M. C. Mendonça, 2024. Use of agro-industrial bio-waste for the growth and production of a previously isolated Bacillus thuringiensis strain. Beni-Suef University Journal of Basic and Applied Sciences, 13 (1): 5 (1-28).
  • Elling, A. A., 2013. Major emerging problems with minor Meloidogyne species. Phytopathology, 103 (11): 1092-1102.
  • Engelbrecht, G., I. Horak, P. J. Jansen van Rensburg & S. Claassens, 2018. Bacillus-based bionematicides: development, modes of action and commercialization. Biocontrol Science and Technology, 28 (7): 629-653.
  • Fayad, N., J. Abboud, F. Driss, N. Louka & M. Kallassy Awad, 2022. Optimization of culture conditions and wheat bran class selection in the production of Bacillus thuringiensis based bioproducts. Fermentation, 8 (12): 666 (1-13).
  • Gani, A., M. Asjad, F. Talib, Z. A. Khan & A. N. Siddiquee, 2021. Identification, ranking and prioritization of vital environmental sustainability indicators in manufacturing sector using Pareto analysis cum best-worst method. International Journal of Sustainable Engineering, 14 (3): 226-244.
  • Gattoni, K. M., S. W. Park & K. S. Lawrence, 2023. Evaluation of the mechanism of action of Bacillus spp. to manage Meloidogyne incognita with split root assay, RT-qPCR and qPCR. Frontiers in Plant Science, 13: 1079109 (1-13).
  • Hooper, D. J., 1986. “Extraction of Nematodes from Plant Material, 59-80”. In: Laboratory Methods for Work with Plants and Soil Nematodes (Eds. J. F. Southey). Ministry of Agriculture, Fisheries and Food, London, UK, 202 pp.
  • Hynes, R. K. & S. M. Boyetchko, 2006. Research initiatives in the art and science of bioproduct formulations. Soil Biology and Biochemistry, 38 (4): 845-849.
  • İmren, M., A. S. Koca & A. A. Dababat, 2019. Identification of Heterodera latipons using PCR with sequence characterized amplified region (SCAR) primers. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5 (1): 90-95.
  • Imren, M., L. Waeyenberge, A. Sami Koca, N. Duman, Ş. Yildiz & A. A. Dababat, 2017. Genetic variation and population dynamics of the cereal cyst nematode, Heterodera filipjevi in wheat areas of Bolu, Turkey. Tropical Plant Pathology, 42: 362-369.
  • Jones, J. T., A. Haegeman, E. G. Danchin, H. S. Gaur, J. Helder, M. G. Jones & R. N. Perry, 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14 (9): 946-961.
  • Junaid, J. M., N. A. Dar, T. A. Bhat, A. H. Bhat & M. A. Bhat, 2013. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant and Animal Sciences, 1 (2): 39-57.
  • Karssen, G. & M. Moens, 2006. “Root-Knot Nematodes, 59-90”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). CAB International, Wallingford, UK, 447 pp.
  • Kavitha, P. G., E. I. Jonathan & S. Nakkeeran, 2012. Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematologia Mediterranea, 40 (2): 203-206.
  • Khalil, M. S. H., A. F. G. Allam & A. T. Barakat, 2012. Nematicidal activity of some bioproduct agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research, 52 (1): 47-52.
  • Khalil, M. S., 2013. The potential of five ecobiorational products on the reproduction of root-knot nematode and plant growth. eScience Journal of Plant Pathology, 2 (2): 84-91.
  • Kumar, S. P. & R. Banerjee, 2013. Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology. Indian Journal of Experimental Biology, 51 (11): 979-983.
  • Kumar, S. P. J. & R. Banerjee, 2019. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrasonics Sonochemistry, 52: 25-32.
  • Linden, R., G. G. Ortega, P. R. Petrovick & V. L. Bassani, 2000. Response surface analysis applied to the preparation of tablets containing a high concentration of vegetable spray-dried extract. Drug Development and Industrial Pharmacy, 26 (4): 441-446.
  • Machado, A. C., 2022. Bionematicides in Brazil: an emerging and challenging market. Revista Anual de Patologia de Plantas, 28: 35-49.
  • Meyer, S. L., 2003. USDA-ARS research programs on microbes for management of plant‐parasitic nematodes. Pest Management Science, 59 (6‐7): 665-670.
  • Mitreva, M., M. L. Blaxter, D. M. Bird & J. P. McCarter, 2005. Comparative genomics of nematodes. Trends in Genetics, 21 (10): 573-581.
  • Nicol, J. M., S. J. Turner, D. L. Coyne, L. D. Nijs, S. Hockland & Z. T. Maafi, 2011. “Current Nematode Threats to World Agriculture, 21-43”. In: Genomics and Molecular Genetics of Plant-Nematode Interactions (Eds. J. Jones, G. Gheysen & C. Fenoll). Springer, Germany, 557 pp.
  • Nwabueze, T. U., 2010. Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimization in the food systems. International Journal of Food Science and Technology, 45 (9): 1768-1776.
  • Pires, D., C. S. Vicente, E. Menéndez, J. M. Faria, L. Rusinque, M. J. Camacho & M. L. Inácio, 2022. The fight against plant-parasitic nematodes: current status of bacterial and fungal biocontrol agents. Pathogens, 11 (10): 1178 (1-22).
  • Ren, Y., B. R. Linter, R. Linforth & T. J. Foster, 2020. A comprehensive investigation of gluten-free bread dough rheology, proving and baking performance, and bread qualities by response surface design and principal component analysis. Food Function, 11 (6): 5333-5345.
  • Riga, E., 2011. The effects of Brassica green manures on plant parasitic and free-living nematodes used in combination with reduced rates of synthetic nematicides. Journal of Nematology, 43 (2): 119-121.
  • Shi, Q., J. Zhang, Q. Fu, G. Hao, C. Liang, F. Duan, H. Zhao & W. Song, 2024. Biocontrol efficacy and induced resistance of Paenibacillus polymyxa J2-4 against Meloidogyne incognita infection in cucumber. Phytopathology, 114 (3): 538-548.
  • Siddiqui, Z. A. & I. Mahmood, 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology, 69 (2): 167-179.
  • Sikandar, A., M. Y. Zhang, Y. Y. Wang, X. F. Zhu, X. Y. Liu, H. Y. Fan & Y. X. Duan, 2020. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Applied Ecology and Environmental Research, 18 (1): 1679-1690.
  • Singh, S. & N. Mathur, 2010. Biological control of root-knot nematode, Meloidogyne incognita infesting tomato. Biocontrol Science and Technology, 20 (8): 865-874.
  • Swain, S., B. R. Jena & S. Beg, 2021. “Design of Experiments for the Development of Biotechnology Products, 171-178” In: Design of Experiments for Pharmaceutical Product Development: Volume II: Applications and Practical Case Studies (Eds. S. Beg). Springer, Singapore, 188 pp.
  • Talwana, H., Z. Sibanda, W. Wanjohi, W. Kimenju, N. Luambano-Nyoni, C. Massawe & B. R. Kerry, 2016. Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages. Pest Management Science, 72 (2): 226-245.
  • Tian, B., J. Yang & K. Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61 (2): 197-213.
  • Tian, X. L., X. M. Zhao, S. Y. Zhao, J. L. Zhao & Z. C. Mao, 2022. The biocontrol functions of Bacillus velezensis strain Bv-25 against Meloidogyne incognita. Frontiers in Microbiology, 13: 843041 (1-11).
  • Timmusk, S., L. Behers, J. Muthoni, A. Muraya & A. C. Aronsson, 2017. Perspectives and challenges of microbial application in agriculture. Frontiers in Plant Science, 8: 49 (1-10).
  • Wesemael, W. M. L., N. Viaene & M. Moens, 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13 (1): 3-16.
  • Xiang, N., K. S. Lawrence, J. W. Kloepper, P. A. Donald, J. A. McInroy & G. W. Lawrence, 2017. Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Disease, 101 (5): 774-784.
  • Xu, X., G. Huang, L. Liu & C. He, 2019. A factorial environment-oriented input-output model for diagnosing urban air pollution. Journal of Cleaner Production, 237: 117731 (1-12).
  • Yang, J., L. Liang, J. Li & K. Zhang, 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97 (16): 7081-7095.
  • Ye, S., Y. Ma, S. Zhou, R. Yan, Z. Yang & Z. Ding, 2024. Biocontrol potential of Priestia megaterium YB-3 against Meloidogyne graminicola and its impact on the rhizosphere microbial community. Journal of Pest Science, 97 (4): 2237-2256.
  • Yılmaz, İ., F. Ulaş & M. Imren, 2025. The effect of some biopesticides on the root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) damaging tomato plants. Turkish Journal of Entomology, 49 (1): 19-26.
  • Zeck, W. M., 1971. A rating scheme for field evaluation of root-knot nematode infestation. Pflanzenschutz Nachrichten, 10: 141-144.
  • Zhang, Q., Y. Liu, P. R. Harvey, B. E. Stummer, J. Yang & Z. Ji, 2023. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. Journal of Applied Microbiology, 134 (5): lxad101 (1-22).
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nematoloji
Bölüm Makaleler
Yazarlar

Fatma Nur Özevin 0009-0008-3757-4370

Furkan Ulaş 0009-0002-3052-4457

Mustafa Imren 0000-0002-7217-9092

Cengizhan Güvenç 0009-0009-2989-3846

Ebubekir Yüksel 0000-0002-6982-5874

Yayımlanma Tarihi 25 Haziran 2025
Gönderilme Tarihi 28 Mart 2025
Kabul Tarihi 20 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 2

Kaynak Göster

APA Özevin, F. N., Ulaş, F., Imren, M., … Güvenç, C. (2025). Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology. Turkish Journal of Entomology, 49(2), 187-200. https://doi.org/10.16970/entoted.1667614
AMA Özevin FN, Ulaş F, Imren M, Güvenç C, Yüksel E. Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology. TED. Haziran 2025;49(2):187-200. doi:10.16970/entoted.1667614
Chicago Özevin, Fatma Nur, Furkan Ulaş, Mustafa Imren, Cengizhan Güvenç, ve Ebubekir Yüksel. “Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology”. Turkish Journal of Entomology 49, sy. 2 (Haziran 2025): 187-200. https://doi.org/10.16970/entoted.1667614.
EndNote Özevin FN, Ulaş F, Imren M, Güvenç C, Yüksel E (01 Haziran 2025) Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology. Turkish Journal of Entomology 49 2 187–200.
IEEE F. N. Özevin, F. Ulaş, M. Imren, C. Güvenç, ve E. Yüksel, “Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology”, TED, c. 49, sy. 2, ss. 187–200, 2025, doi: 10.16970/entoted.1667614.
ISNAD Özevin, Fatma Nur vd. “Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology”. Turkish Journal of Entomology 49/2 (Haziran2025), 187-200. https://doi.org/10.16970/entoted.1667614.
JAMA Özevin FN, Ulaş F, Imren M, Güvenç C, Yüksel E. Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology. TED. 2025;49:187–200.
MLA Özevin, Fatma Nur vd. “Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology”. Turkish Journal of Entomology, c. 49, sy. 2, 2025, ss. 187-00, doi:10.16970/entoted.1667614.
Vancouver Özevin FN, Ulaş F, Imren M, Güvenç C, Yüksel E. Optimization of a Bacillus-based bioproduct for Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) control using response surface methodology. TED. 2025;49(2):187-200.