The transportation sector is one of the most important sectors in which greenhouse gas emissions (GHG) are the highest, thus causing the global warming problem to rise. One of the most effective and international solutions to this problem is considered to be a technology-oriented struggle, and the development of green technologies is encouraged by global authorities. The study aims to investigate the success of the technology-oriented struggle against global warming in the transport sector. In analyses, data on transportation-related greenhouse gas emissions, the number of patents (transport-related climate change mitigation technologies), trade openness, and GDP per capita of 12 OECD countries years between 1999-2017 were used. To identify the long-run and short-run relationship among variables, the Cross-Sectional Autoregressive Distributed Lags Estimator (CSARDL) and also the Mean Group (MG), Augmented Mean Group (AMG), and Common Correlated Effects Mean Group Estimators (CCE) were applied. According to the estimators' findings, no evidence was found that the number of patents and trade openness affected greenhouse gas emissions, but it was determined that GDP positively affected greenhouse gas emissions. As a result, it can be said that the technology-oriented struggle against climate change in the transportation sector alone isn't sufficient to reduce transportation-related GHG emissions.
Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z. and Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources Policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817
Ahn, H. and Park, E. (2022). For sustainable development in the transportation sector: Determinants of acceptance of sustainable transportation using the innovation diffusion theory and technology acceptance model. Sustainable Development, 30(5), 1169-1183. https://doi.org/10.1002/sd.2309
Al Mamun, M., Sohag, K., Shahbaz, M. and Hammoudeh, S. (2018). Financial markets, innovations and cleaner energy production in OECD countries. Energy Economics, 72, 236-254. https://doi.org/10.1016/j.eneco.2018.04.011
Alam, I. and Quazi, R. (2003). Determinants of capital flight: An econometric case study of Bangladesh. International Review of Applied Economics, 17(1), 85-103. https://doi.org/10.1080/713673164
Álvarez-Herránz, A., Balsalobre, D., Cantos, J.M. and Shahbaz, M. (2017). Energy innovations-GHG emissions nexus: Fresh empirical evidence from OECD countries. Energy Policy, 101, 90-100. https://doi.org/10.1016/j.enpol.2016.11.030
Andrés, L. and Padilla, E. (2018). Driving factors of GHG emissions in the EU transport activity. Transport Policy, 61, 60-74. https://doi.org/10.1016/j.tranpol.2017.10.008
Andress, D., Nguyen, T.D. and Das, S. (2011). Reducing GHG emissions in the United States' transportation sector. Energy for Sustainable Development, 15(2), 117-136. https://doi.org/10.1016/j.esd.2011.03.002
Bakker, S., Zuidgeest, M., Coninck, H. and Huizenga, C. (2014). Transport, development and climate change mitigation: Towards an integrated approach. Transport Reviews, 34(3), 335–355. https://doi.org/10.1080/01441647.2014.903531
Caravella, S., Costantini, V. and Crespi, F. (2021). Mission-oriented policies and technological sovereignty: The case of climate mitigation technologies. Energies, 14(20), 6854. https://doi.org/10.3390/en14206854
Chapman, L. (2007). Transport and climate change: A review. Journal of Transport Geography, 15(5), 354-367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
Chudik, A. and Pesaran, M.H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007
Dechezleprêtre, A., Glachant, M. and Ménière, Y. (2013). What drives the international transfer of climate change mitigation technologies? Empirical evidence from patent data. Environmental and Resource Economics, 54, 161-178. https://doi.org/10.1007/s10640-012-9592-0
Dechezleprêtre, A., Martin, R. and Bassi, S. (2019). Climate change policy, innovation and growth. In R. Fouquet (Eds.), Handbook on green growth (pp. 217-239). UK: Edward Elgar Publishing.
Dedinec, A., Markovska, N., Taseska, V., Duic, N. and Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177-187. https://doi.org/10.1016/j.energy.2013.05.011
Eberhardt, M. and Bond, S. (2009). Cross-section dependence in nonstationary panel models: A novel estimator (MPRA Paper No. 17692). Retrieved from https://mpra.ub.uni-muenchen.de/17870/2/MPRA_paper_17870.pdf
EPO. (2022). Searching for patents. Retrieved from https://www.epo.org/searching-for-patents.html
Fan, F. and Lei, Y. (2016). Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transportation Research Part D: Transport and Environment, 42, 135-145. https://doi.org/10.1016/j.trd.2015.11.001
Feng, C., Sun, L.X. and Xia, Y.S. (2020). Clarifying the “gains” and “losses” of transport climate mitigation in China from technology and efficiency perspectives. Journal of Cleaner Production, 263, 121545. https://doi.org/10.1016/j.jclepro.2020.121545
Fenley, C.A., Machado, W.V. and Fernandes, E. (2007). Air transport and sustainability: Lessons from Amazonas. Applied Geography, 27, 63-77. https://doi.org/10.1016/j.apgeog.2006.12.002
Ferreira, J.J.M., Fernandes, C.I. and Ferreira, F.A.F. (2020). Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of
European countries. Technological Forecasting & Social Change, 150, 119770. https://doi.org/10.1016/j.techfore.2019.119770
Ghannouchi, I., Ouni, F. and Aloulou, F. (2023). Investigating the impact of transportation system and economic growth on carbon emissions: Application of GMM System for 33 european countries. Environmental Science and Pollution Research, 30(39), 90656-90674. https://doi.org/10.1007/s11356-023-28595-6
Hacıimamoğlu, T. (2023). Testing the environmental Phillips Curve hypothesis in MIKTA countries: CSARDL test approach. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 13(1), 301-316. https://doi.org/10.48146/odusobiad.1104588
Hussain, Z. (2022). Environmental and economic-oriented transport efficiency: The role of climate change mitigation technology. Environmental Science and Pollution Research, 29(19), 29165-29182. https://doi.org/10.1007/s11356-021-18392-4
IPCC. (1995). Climate change 1995: IPCC second assessment report (A Report of the Intergovermental Panel on Climate Change). Retrieved from https://digital.library.unt.edu/ark:/67531/metadc11834/m1/1/
IPCC. (1996). Technologies, policies and measures for mitigating climate change (IPCC Technical Paper I). Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/paper-I-en.pdf
Johnstone, N., Haščič, I. and Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155. https://doi.org/10.1007/s10640-009-9309-1
Jordaan, S.M., Romo-Rabago, E., McLeary, R., Reidy, L., Nazari, J. and Herremans, I.M. (2017). The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renewable and Sustainable Energy Reviews, 78, 1397-1409. https://doi.org/10.1016/j.rser.2017.05.162
Karagöl, E., Erbaykal, E. and Ertuğrul, H.M. (2007). Economic growth and electricity consumption in Turkey: A bound test approach. Doğuş Üniversitesi Dergisi, 8(1), 72-80. Retrieved from https://dergipark.org.tr/en/pub/doujournal/
Kaypak, Ş. (2011). A sustainable environment for a sustainable development in the process of globalization. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13(20), 19-33. Retrieved from https://dergipark.org.tr/en/pub/kmusekad/
Kılıç, S. (2012). An ecological approach to the economic dimension of sustainable development concept. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 47, 201-226. Retrieved from https://dergipark.org.tr/en/pub/iusiyasal
Longshurst, J., Gibbs, D.C., Raper, D.W. and Conlan, D.E. (1996). Towards sustainable airport development. The Environmentalist, 16, 197-202. https://doi.org/10.1007/BF01324760
Mazzarino, M. (2000). The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy. Energy Policy, 28(13), 957-966. https://doi.org/10.1016/S0301-4215(00)00078-1
Miotti, M., Supran, G.J., Kim, E.J. and Trancik, J.E. (2016). Personal vehicles evaluated against climate change mitigation targets. Environmental Science & Technology, 50(20), 10795-10804. https://doi.org/10.1021/acs.est.6b00177
Moreira, J.R. and Pacca, S.A. (2020). The climate change mitigation potential of sugarcane based technologies for automobiles; CO2 negative emissions in sight. Transportation Research Part D: Transport and Environment, 86, 102454. https://doi.org/10.1016/j.trd.2020.102454
Narayan, P.K. and Smyth, R. (2006). What determines migration flows from low‐income to high‐income countries? An empirical investigation of Fiji–Us migration 1972–2001. Contemporary Economic Policy, 24(2), 332-342. https://doi.org/10.1093/cep/byj019
OECD. (2023). OECD data [Database]. Retrieved from https://data.oecd.org/
Our World in Data. (2022). Trade openness [Database]. Retrieved from https://ourworldindata.org/
Panepinto, D., Riggio, V.A. and Zanetti, M. (2021). Analysis of the emergent climate change mitigation technologies. International Journal of Environmental Research and Public Health, 18(13), 6767. https://doi.org/10.3390/ijerph18136767
Pasimeni, F., Fiorini, A. and Georgakaki, A. (2021). International landscape of the inventive activity on climate change mitigation technologies. A patent analysis. Energy Strategy Reviews, 36, 100677. https://doi.org/10.1016/j.esr.2021.100677
Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006 .00692.x
Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312, https://doi.org/10.1002/jae.951
Pesaran, M.H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
Pesaran, M.H. and Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-F
Pesaran, M.H. and Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
Princiotta, F.T. (2021). The climate mitigation challenge - Where do we stand? Journal of the Air & Waste Management Association, 71(10), 1234-1250. https://doi.org/10.1080/10962247.2021.1948458
Raiser, K., Naims, H. and Bruhn, T. (2017). Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Research & Social Science, 27, 1-8. https://doi.org/10.1016/j.erss.2017.01.020
Rajan, S.C. (2006). Climate change dilemma: Technology, social change or both?: An examination of long-term transport policy choices in the United States. Energy Policy, 34(6), 664-679. https://doi.org/10.1016/j.enpol.2004.07.002
Seçilmiş, N. and Konu, A. (2021). Türkiye’de hava taşımacılığı altyapı yatırımlarının havacılık ekonomisi üzerindeki etkileri. D. Macit (Ed.), Havacılık ekonomisi teori, politika ve güncel araştırmalar içinde (s. 249-273). Ankara: Nobel Press.
Stanley, J.K., Hensher, D.A. and Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice, 45(10), 1020-1030. https://doi.org/10.1016/j.tra.2009.04.005
Su, H.-N. and Moaniba, I.M. (2017). Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technological Forecasting and Social Change, 122, 49–62. https://doi.org/10.1016/j.techfore.2017.04.017
Ülengin, F., Işık, M., Ekici, Ş.Ö., Özaydın, Ö., Kabak, Ö. and Topçu, Y.İ. (2018). Policy developments for the reduction of climate change impacts by the transportation sector. Transport Policy, 61, 36-50, https://doi.org/10.1016/j.tranpol.2017.09.008
UN. (2021). 2020 international trade statistics yearbook (United Nations ST/ESA/STAT/SER.G/69 (Vol.II)). Retrieved from https://comtradeapi.un.org/files/v1/app/publicationfiles/2020/VolII2020.pdf
World Bank. (2022). World development indicators [Database]. Retrieved from https://databank.worldbank.org/source/world-development-indicators
Wright, L. and Fulton, L. (2005). Climate change mitigation and transport in developing nations. Transport Reviews, 25(6), 691-7171464. https://doi.org/10.1080/01441640500360951
Taşımacılık Sektöründe İklim Değişikliğine Karşı Teknoloji Yönlü Mücadele: Ampirik Bir İnceleme
Ulaştırma sektörü, sera gazı emisyonlarının (GHG) en yüksek olduğu ve dolayısıyla küresel ısınma sorununun büyümesine neden olan en önemli sektörlerden biridir. Bu sorunun en etkili ve küresel çözümünün teknoloji odaklı mücadele olduğu düşünülmekte ve yeşil teknolojilerin geliştirilmesi küresel otoriteler tarafından teşvik edilmektedir. Bu çalışma, ulaştırma sektöründe küresel ısınmaya karşı teknoloji odaklı mücadelenin başarısını ölçmeyi amaçlamaktadır. Analiz için 12 OECD ülkesinin 1999-2017 yılları arasındaki ulaştırma kaynaklı sera gazı emisyonları, patent sayısı (ulaşımla ilgili iklim değişikliğini azaltma teknolojileri), ticari açıklık ve kişi başına düşen GSYİH verilerinden yararlanılmıştır. Bu çerçevede değişkenler arasındaki uzun ve kısa dönemli ilişkinin belirlenmesi amacıyla yatay kesit otoregresif dağıtılmış gecikme tahmincisi (cross‐sectionally augmented autoregressive distributed lag – CS ARDL) ve ek olarak Ortalama Grup (Mean Group MG), Artırılmış Ortalama Grup (Augmented Mean Group -AMG) ve Ortak İlişkili Etkiler Ortalama Grup Tahmin Edicileri (Common Correlated Effects-CCE) kullanılmıştır. Kullanılan tüm tahmin edicilerin bulgularına göre, patent sayıları ve ticari açıklığın sera gazı emisyonlarını etkilediğine dair herhangi bir kanıt bulunamamış, fakat GSYİH'nın sera gazı emisyonlarını olumlu yönde etkilediği tespit edilmiştir. Sonuç olarak, ulaştırma sektöründe iklim değişikliğine karşı teknoloji yönlü mücadelenin, ulaşım kaynaklı GHG emisyonlarını azaltmada tek başına yeterli olamadığı söylenebilir.
Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z. and Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources Policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817
Ahn, H. and Park, E. (2022). For sustainable development in the transportation sector: Determinants of acceptance of sustainable transportation using the innovation diffusion theory and technology acceptance model. Sustainable Development, 30(5), 1169-1183. https://doi.org/10.1002/sd.2309
Al Mamun, M., Sohag, K., Shahbaz, M. and Hammoudeh, S. (2018). Financial markets, innovations and cleaner energy production in OECD countries. Energy Economics, 72, 236-254. https://doi.org/10.1016/j.eneco.2018.04.011
Alam, I. and Quazi, R. (2003). Determinants of capital flight: An econometric case study of Bangladesh. International Review of Applied Economics, 17(1), 85-103. https://doi.org/10.1080/713673164
Álvarez-Herránz, A., Balsalobre, D., Cantos, J.M. and Shahbaz, M. (2017). Energy innovations-GHG emissions nexus: Fresh empirical evidence from OECD countries. Energy Policy, 101, 90-100. https://doi.org/10.1016/j.enpol.2016.11.030
Andrés, L. and Padilla, E. (2018). Driving factors of GHG emissions in the EU transport activity. Transport Policy, 61, 60-74. https://doi.org/10.1016/j.tranpol.2017.10.008
Andress, D., Nguyen, T.D. and Das, S. (2011). Reducing GHG emissions in the United States' transportation sector. Energy for Sustainable Development, 15(2), 117-136. https://doi.org/10.1016/j.esd.2011.03.002
Bakker, S., Zuidgeest, M., Coninck, H. and Huizenga, C. (2014). Transport, development and climate change mitigation: Towards an integrated approach. Transport Reviews, 34(3), 335–355. https://doi.org/10.1080/01441647.2014.903531
Caravella, S., Costantini, V. and Crespi, F. (2021). Mission-oriented policies and technological sovereignty: The case of climate mitigation technologies. Energies, 14(20), 6854. https://doi.org/10.3390/en14206854
Chapman, L. (2007). Transport and climate change: A review. Journal of Transport Geography, 15(5), 354-367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
Chudik, A. and Pesaran, M.H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007
Dechezleprêtre, A., Glachant, M. and Ménière, Y. (2013). What drives the international transfer of climate change mitigation technologies? Empirical evidence from patent data. Environmental and Resource Economics, 54, 161-178. https://doi.org/10.1007/s10640-012-9592-0
Dechezleprêtre, A., Martin, R. and Bassi, S. (2019). Climate change policy, innovation and growth. In R. Fouquet (Eds.), Handbook on green growth (pp. 217-239). UK: Edward Elgar Publishing.
Dedinec, A., Markovska, N., Taseska, V., Duic, N. and Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177-187. https://doi.org/10.1016/j.energy.2013.05.011
Eberhardt, M. and Bond, S. (2009). Cross-section dependence in nonstationary panel models: A novel estimator (MPRA Paper No. 17692). Retrieved from https://mpra.ub.uni-muenchen.de/17870/2/MPRA_paper_17870.pdf
EPO. (2022). Searching for patents. Retrieved from https://www.epo.org/searching-for-patents.html
Fan, F. and Lei, Y. (2016). Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transportation Research Part D: Transport and Environment, 42, 135-145. https://doi.org/10.1016/j.trd.2015.11.001
Feng, C., Sun, L.X. and Xia, Y.S. (2020). Clarifying the “gains” and “losses” of transport climate mitigation in China from technology and efficiency perspectives. Journal of Cleaner Production, 263, 121545. https://doi.org/10.1016/j.jclepro.2020.121545
Fenley, C.A., Machado, W.V. and Fernandes, E. (2007). Air transport and sustainability: Lessons from Amazonas. Applied Geography, 27, 63-77. https://doi.org/10.1016/j.apgeog.2006.12.002
Ferreira, J.J.M., Fernandes, C.I. and Ferreira, F.A.F. (2020). Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of
European countries. Technological Forecasting & Social Change, 150, 119770. https://doi.org/10.1016/j.techfore.2019.119770
Ghannouchi, I., Ouni, F. and Aloulou, F. (2023). Investigating the impact of transportation system and economic growth on carbon emissions: Application of GMM System for 33 european countries. Environmental Science and Pollution Research, 30(39), 90656-90674. https://doi.org/10.1007/s11356-023-28595-6
Hacıimamoğlu, T. (2023). Testing the environmental Phillips Curve hypothesis in MIKTA countries: CSARDL test approach. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 13(1), 301-316. https://doi.org/10.48146/odusobiad.1104588
Hussain, Z. (2022). Environmental and economic-oriented transport efficiency: The role of climate change mitigation technology. Environmental Science and Pollution Research, 29(19), 29165-29182. https://doi.org/10.1007/s11356-021-18392-4
IPCC. (1995). Climate change 1995: IPCC second assessment report (A Report of the Intergovermental Panel on Climate Change). Retrieved from https://digital.library.unt.edu/ark:/67531/metadc11834/m1/1/
IPCC. (1996). Technologies, policies and measures for mitigating climate change (IPCC Technical Paper I). Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/paper-I-en.pdf
Johnstone, N., Haščič, I. and Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155. https://doi.org/10.1007/s10640-009-9309-1
Jordaan, S.M., Romo-Rabago, E., McLeary, R., Reidy, L., Nazari, J. and Herremans, I.M. (2017). The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renewable and Sustainable Energy Reviews, 78, 1397-1409. https://doi.org/10.1016/j.rser.2017.05.162
Karagöl, E., Erbaykal, E. and Ertuğrul, H.M. (2007). Economic growth and electricity consumption in Turkey: A bound test approach. Doğuş Üniversitesi Dergisi, 8(1), 72-80. Retrieved from https://dergipark.org.tr/en/pub/doujournal/
Kaypak, Ş. (2011). A sustainable environment for a sustainable development in the process of globalization. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13(20), 19-33. Retrieved from https://dergipark.org.tr/en/pub/kmusekad/
Kılıç, S. (2012). An ecological approach to the economic dimension of sustainable development concept. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 47, 201-226. Retrieved from https://dergipark.org.tr/en/pub/iusiyasal
Longshurst, J., Gibbs, D.C., Raper, D.W. and Conlan, D.E. (1996). Towards sustainable airport development. The Environmentalist, 16, 197-202. https://doi.org/10.1007/BF01324760
Mazzarino, M. (2000). The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy. Energy Policy, 28(13), 957-966. https://doi.org/10.1016/S0301-4215(00)00078-1
Miotti, M., Supran, G.J., Kim, E.J. and Trancik, J.E. (2016). Personal vehicles evaluated against climate change mitigation targets. Environmental Science & Technology, 50(20), 10795-10804. https://doi.org/10.1021/acs.est.6b00177
Moreira, J.R. and Pacca, S.A. (2020). The climate change mitigation potential of sugarcane based technologies for automobiles; CO2 negative emissions in sight. Transportation Research Part D: Transport and Environment, 86, 102454. https://doi.org/10.1016/j.trd.2020.102454
Narayan, P.K. and Smyth, R. (2006). What determines migration flows from low‐income to high‐income countries? An empirical investigation of Fiji–Us migration 1972–2001. Contemporary Economic Policy, 24(2), 332-342. https://doi.org/10.1093/cep/byj019
OECD. (2023). OECD data [Database]. Retrieved from https://data.oecd.org/
Our World in Data. (2022). Trade openness [Database]. Retrieved from https://ourworldindata.org/
Panepinto, D., Riggio, V.A. and Zanetti, M. (2021). Analysis of the emergent climate change mitigation technologies. International Journal of Environmental Research and Public Health, 18(13), 6767. https://doi.org/10.3390/ijerph18136767
Pasimeni, F., Fiorini, A. and Georgakaki, A. (2021). International landscape of the inventive activity on climate change mitigation technologies. A patent analysis. Energy Strategy Reviews, 36, 100677. https://doi.org/10.1016/j.esr.2021.100677
Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006 .00692.x
Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312, https://doi.org/10.1002/jae.951
Pesaran, M.H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
Pesaran, M.H. and Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-F
Pesaran, M.H. and Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
Princiotta, F.T. (2021). The climate mitigation challenge - Where do we stand? Journal of the Air & Waste Management Association, 71(10), 1234-1250. https://doi.org/10.1080/10962247.2021.1948458
Raiser, K., Naims, H. and Bruhn, T. (2017). Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Research & Social Science, 27, 1-8. https://doi.org/10.1016/j.erss.2017.01.020
Rajan, S.C. (2006). Climate change dilemma: Technology, social change or both?: An examination of long-term transport policy choices in the United States. Energy Policy, 34(6), 664-679. https://doi.org/10.1016/j.enpol.2004.07.002
Seçilmiş, N. and Konu, A. (2021). Türkiye’de hava taşımacılığı altyapı yatırımlarının havacılık ekonomisi üzerindeki etkileri. D. Macit (Ed.), Havacılık ekonomisi teori, politika ve güncel araştırmalar içinde (s. 249-273). Ankara: Nobel Press.
Stanley, J.K., Hensher, D.A. and Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice, 45(10), 1020-1030. https://doi.org/10.1016/j.tra.2009.04.005
Su, H.-N. and Moaniba, I.M. (2017). Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technological Forecasting and Social Change, 122, 49–62. https://doi.org/10.1016/j.techfore.2017.04.017
Ülengin, F., Işık, M., Ekici, Ş.Ö., Özaydın, Ö., Kabak, Ö. and Topçu, Y.İ. (2018). Policy developments for the reduction of climate change impacts by the transportation sector. Transport Policy, 61, 36-50, https://doi.org/10.1016/j.tranpol.2017.09.008
UN. (2021). 2020 international trade statistics yearbook (United Nations ST/ESA/STAT/SER.G/69 (Vol.II)). Retrieved from https://comtradeapi.un.org/files/v1/app/publicationfiles/2020/VolII2020.pdf
World Bank. (2022). World development indicators [Database]. Retrieved from https://databank.worldbank.org/source/world-development-indicators
Wright, L. and Fulton, L. (2005). Climate change mitigation and transport in developing nations. Transport Reviews, 25(6), 691-7171464. https://doi.org/10.1080/01441640500360951
Seçilmiş, N., & Gümüş Akar, P. (2024). Technology Oriented Struggle Against Climate Change in Transportation Sector: An Empirical Investigation. Ekonomi Politika Ve Finans Araştırmaları Dergisi, 9(2), 323-335. https://doi.org/10.30784/epfad.1364140