Araştırma Makalesi
BibTex RIS Kaynak Göster

Inflation Forecasting in the Context of Economic Shocks and Crises in Türkiye: Comparison of XGBoost and ARMA Methods

Yıl 2024, , 877 - 895, 31.12.2024
https://doi.org/10.30784/epfad.1560378

Öz

Inflation is a key macroeconomic indicator with profound implications for economic stability and growth. Persistent increases in the general level of prices not only weaken individuals' purchasing power but also pose serious threats to various sectors of the national economy. Accurate inflation forecasting is therefore of strategic importance for central banks and governments. This paper examines the performance of XGBoost and ARMA models in forecasting inflation during economic shocks and crisis periods in Türkiye. The 1994 economic crisis, 2001 financial crisis, 2008 global financial crisis, and 2018 currency crisis, along with Türkiye's unique macroeconomic conditions, complicate accurate inflation forecasting. This study compares the performance of the XGBoost machine learning algorithm and the ARMA model over different periods, including crises. The findings show XGBoost performs well for large datasets and crisis periods, while ARMA performs better for smaller datasets. Particularly, the forecasting model integrating ARMA's lagged variables into XGBoost proves most effective during crises and across the entire sample period, 1990:02-2024:06. These results highlight the models' sensitivity to data structure and their efficiency in different periods.

Kaynakça

  • Ahlburg, A.D. (1992). Predicting the job performance of managers: What do the experts know? International Journal of Forecasting, 7(4), 467-472. https://doi.org/10.1016/0169-2070(92)90030-D
  • Akbulut, H. (2022). Forecasting inflation in Turkey: A comparison of time-series and machine learning models. Economic Journal of Emerging Markets, 14(1), 55-71. https://doi.org/10.20885/ejem.vol14.iss1.art5
  • Almosova, A. and Andresen, N. (2023). Nonlinear inflation forecasting with recurrent neural networks. Journal of Forecasting, 42(2), 240–259. https://doi.org/10.1002/for.2901
  • Aras, S. and Lisboa, P. (2022). Explainable inflation forecasts by machine learning models. Expert Systems with Applications, 207, 117982. https://doi.org/10.1016/j.eswa.2022.117982
  • Berument, H.M. and Taşçi, H. (2004). Monetary policy rules in practice: Evidence from Turkey. International Journal of Finance & Economics, 9(1), 33-38. https://doi.org/10.1002/ijfe.219
  • Berument, M.H., Ceylan, N.B. and Dogan, B. (2014). An interest-rate-spread-based measure of Turkish monetary policy. Applied Economics, 46(15), 1804–1813. https://doi.org/10.1080/00036846.2014.884703
  • Bulut, Ü. (2018). Inflation expectations in Turkey: Determinants and roles in missing inflation targets. Journal of Central Banking Theory and Practice, 7(3), 73-90. https://doi.org/10.2478/jcbtp-2018-0024
  • Carriero, A., Galvao, A.B. and Kapetanios, G. (2019). A comprehensive evaluation of macroeconomic forecasting methods. International Journal of Forecasting, 35(4), 1226–1239. https://doi.org/10.1016/j.ijforecast.2019.02.007
  • Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In B. Krishnapuram and M. Shah (Eds.), Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). Papers presented at the KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California. New York: Association for Computing Machinery.
  • Chen, X., Racine, J. and Swanson, N.R. (2001). Semiparametric ARX neural-network models with an application to forecasting inflation. IEEE Transactions on Neural Networks, 12(4), 674–683. Retrieved from https://ieeexplore.ieee.org/
  • Clark, T.E., Huber, F., Koop, G. and Marcellino, M. (2024). Forecasting US inflation using Bayesian nonparametric models. The Annals of Applied Statistics, 18(2), 1421-1444. doi:10.1214/23-AOAS1841
  • Deka, A. and Reşatoğlu, N. (2019). Forecasting foreign exchange rate and consumer price index with Arima model: The case of Turkey. International Journal of Scientific Research and Management, 7(08), 1254-1275. https://doi.org/10.18535/ijsrm/v7i8.em01
  • Domit, S., Monti, F. and Sokol, A. (2019). Forecasting the UK economy with a medium-scale Bayesian VAR. International Journal of Forecasting, 35(4), 1669–1678. https://doi.org/10.1016/j.ijforecast.2018.11.004
  • Dwumfour, R. (2019). Explaining banking spread. Journal of Financial Economic Policy, 11(1), 139-156. https://doi.org/10.1108/jfep-02-2018-0031
  • Faust, J. and Wright, J.H. (2013). Forecasting inflation. In G. Elliott and A. Timmermann (Eds.), Handbook of economic forecasting: Volume 2A (pp. 2–56). Princeton: Princeton University Press.
  • Fildes, R. (1992). Forecasting structural time series models and the Kalman filter. International Journal of Forecasting, 8(4), 635. https://doi.org/10.1016/0169-2070(92)90072-h
  • Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
  • Garcia, M.G., Medeiros, M.C. and Vasconcelos, G.F. (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting, 33(3), 679–693. https://doi.org/10.1016/j.ijforecast.2017.02.002
  • Girdzijauskas, S., Štreimikienė, D., Griesienė, I., Mikalauskienė, A. and Kyriakopoulos, G. (2022). New approach to inflation phenomena to ensure sustainable economic growth. Sustainability, 14(1), 518. https://doi.org/10.3390/su14010518
  • Gono, D. (2023). Silver price forecasting using extreme gradient boosting (XGBoost) method. Mathematics, 11(18), 3813. https://doi.org/10.3390/math11183813
  • Ha, J., Stocker, M. and Yilmazkuday, H. (2020). Inflation and exchange rate passthrough. Journal of International Money and Finance, 105, 102187. https://doi.org/10.1016/j.jimonfin.2020.102187
  • Hauzenberger, N., Huber, F. and Klieber, K. (2023). Real-time inflation forecasting using non-linear dimension reduction techniques. International Journal of Forecasting, 39(2), 901–921. https://doi.org/10.1016/j.ijforecast.2022.03.002
  • Honoré, T. (2018). Monetary policy and inflation: Empirical evidence from Cameroon. International Journal of Economics Finance and Management Sciences, 6(5), 200-207. https://doi.org/10.11648/j.ijefm.20180605.11
  • Hubrich, K. (2005). Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy? International Journal of Forecasting, 21(1), 119–136. https://doi.org/10.1016/j.ijforecast.2004.04.005
  • Hyndman, R.J. and Koehler, A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
  • Ivașcu, C. (2023). Can machine learning models predict inflation? Proceedings of the International Conference on Business Excellence, 17(1), 1748-1756. https://doi.org/10.2478/picbe-2023-0155
  • Ji, Y. (2023). Shock therapy in transition countries: A behavioral macroeconomic approach. Comparative Economic Studies, 65(3), 483-510. https://doi.org/10.1057/s41294-023-00211-z
  • Jumhur, J., Nasrun, M., Agustiar, M. and Wahyudi, W. (2018). Pengaruh jumlah uang beredar, ekspor dan impor terhadap inflasi (Studi empiris pada perekonomian Indonesia). Jurnal Ekonomi Bisnis Dan Kewirausahaan, 7(3), 186-201. https://doi.org/10.26418/jebik.v7i3.26991
  • Kamber, G. and Wong, B. (2020). Global factors and trend inflation. Journal of International Economics, 122, 103265. https://doi.org/10.1016/j.jinteco.2019.103265
  • Kara, H., Küçük Tuğer, H., Özlale, U., Tuğer, B., Yavuz, D. and Yücel, M.E. (2007). Exchange rate pass-through in Turkey: Has it changed and to what extent? (CBRT Research Department Working Paper No. 05/04). Retrieved from https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Research/Working+Paperss/2005/05-04
  • Kemal, M. (2022). Is inflation in Pakistan a monetary phenomenon? The Pakistan Development Review, 45(2), 213-220. https://doi.org/10.30541/v45i2pp.213-220
  • Koop, G.M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177–203. 1537. https://doi.org/10.1002/jae.1270
  • Kose, N., Emirmahmutoglu, F. and Aksoy, S. (2012). The interest rate–inflation relationship under an inflation targeting regime: The case of Turkey. Journal of Asian Economics, 23(4), 476-485. https://doi.org/10.1016/j.asieco.2012.03.001
  • Li, Y.S., Pai, P.F., and Lin, Y.L. (2023). Forecasting inflation rates be extreme gradient boosting with the genetic algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(3), 2211-2220. https://doi.org/10.1007/s12652-022-04479-4
  • Makridakis, S., Spiliotis, E. and Assimakopoulos, V. (2020). The M4 Competition: 100,000-time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54-74. https://doi.org/10.1016/j.ijforecast.2019.04.014
  • McAdam, P. and McNelis, P. (2005). Forecasting inflation with thick models and neural networks. Economic Modelling, 22(5), 848–867. https://doi.org/10.1016/j.econmod.2005.06.002
  • Medeiros, M.C., Vasconcelos, G.F., Veiga, Á. and Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98–119. https://doi.org/10.1080/07350015.2019.1637745
  • Nakamura, E. (2005). Inflation forecasting using a neural network. Economics Letters, 86(3), 373–378. https://doi.org/10.1016/j.econlet.2004.09.003
  • Niyimbanira, F. (2013). An econometric evidence of the interactions between inflation and economic growth in South Africa. Mediterranean Journal of Social Sciences, 4(13), 219-225. https://doi.org/10.5901/mjss.2013.v4n13p219
  • Noh, J., Cheon, J., Seong, H., Kwon, Y. and Yoo, K. (2023). Impacts of smoking ban policies on billiard hall sales in South Korea using objective sales information of a credit card company: Quasi-experimental study. MIR Public Health Surveill, 10, e50466. https://doi.org/10.2196/preprints.50466
  • Ogunc, F., Akdoğan, K., Başer, S., Chadwick, M., Ertug, D., Hulagu, T., … Tekatli, N. (2013). Short-term inflation forecasting models for Turkey and a forecast combination analysis. Economic Modelling, 33, 312-325. https://doi.org/10.1016/j.econmod.2013.04.001
  • Özgür, O. and Akkoç, U. (2022). Inflation forecasting in an emerging economy: Selecting variables with machine learning algorithms. International Journal of Emerging Markets, 17(8), 1889-1908. https://doi.org/10.1108/ijoem-05-2020-0577
  • Peirano, R., Kristjanpoller, W. and Minutolo, M. (2021). Forecasting inflation in Latin American countries using a SARIMA–LSTM combination. Soft Computing, 25(16), 10851-10862. https://doi.org/10.1007/s00500-021-06016-5
  • Pesaran, M.H., Schuermann, T. and Smith, L.V. (2009). Forecasting economic and financial variables with global VARs. International Journal of Forecasting, 25(4), 642-675. https://doi.org/10.1016/j.ijforecast.2009.08.007
  • Rayner, B. and Bolhuis, M. (2020). Deus ex machina? A framework for macro forecasting with machine learning (IMF Working Paper No. 20/45). https://doi.org/10.5089/9781513531724.001
  • Rizinski, M., Peshov, H., Mishev, K., Chitkushev, L., Vodenska, I. and Trajanov, D. (2022). Ethically responsible machine learning in fintech. IEEE Access, 10, 97531-97554. https://doi.org/10.1109/access.2022.3202889
  • Salkuti, S.R. (2020). A survey of big data and machine learning. International Journal of Electrical & Computer Engineering, 10(1), 575-580. http://doi.org/10.11591/ijece.v10i1.pp575-580
  • Stock, J.H. and Watson, M.W. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293–335. https://doi.org/10.1016/S0304-3932(99)00027-6
  • Stock, J.H. and Watson, M.W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking, 39, 3–33. https://doi.org/10.1111/j.1538-4616.2007.00014.x
  • Stock, J.H. and Watson, M.W. (2008). Phillips curve inflation forecasts (NBER Working Paper No. 14322). Retrieved from https://www.nber.org/system/files/working_papers/w14322/w14322.pdf
  • Stock, J.H. and Watson, M.W. (2016). Core inflation and trend inflation. The Review of Economics and Statistics, 98(4), 770–784. https://doi.org/10.1162/REST_a_00608
  • Tursoy, T. and Mar’i, M. (2020). Lead-lag and relationship between money growth and inflation in Turkey: New evidence from a wavelet analysis. Theoretical and Practical Research in Economic Fields, 11(1), 47-57. https://doi.org/10.14505/tpref.v11.1(21).04
  • Yazgan, E. and Yilmazkuday, H. (2007). Monetary policy rules in practice: Evidence from Turkey and Israel. Applied Financial Economics, 17(1), 1-8. https://doi.org/10.1080/09603100600606206
  • Yılmaz, S. (2023). Investigating factors influencing inflation in the USA. Equinox Journal of Economics Business and Political Studies, 10(2), 128-142. https://doi.org/10.48064/equinox.1339198
  • Yusof, N., Nin, L., Kamal, H., Taslim, J. and Zainoddin, A. (2021). Factors that influence the inflation rate in Malaysia. International Journal of Academic Research in Business and Social Sciences, 11(9), 626-637. https://doi.org/10.6007/ijarbss/v11-i9/10838

Türkiye'de Ekonomik Şoklar ve Krizler Bağlamında Enflasyon Öngörüsü: XGBOOST ve ARMA Yöntemlerinin Karşılaştırması

Yıl 2024, , 877 - 895, 31.12.2024
https://doi.org/10.30784/epfad.1560378

Öz

Enflasyon, ekonomik istikrar ve büyüme üzerinde derin etkiler yaratan, temel bir makroekonomik göstergedir. Fiyatlar genel düzeyindeki süreklilik arz eden artışlar, yalnızca bireylerin satın alma güçlerini zayıflatmakla kalmayıp, ulusal ekonominin çeşitli sektörleri üzerinde de ciddi tehditler oluşturmaktadır. Dolayısıyla, enflasyonun doğru tahmini hem merkez bankaları hem de hükümetler için stratejik bir önem taşımaktadır. Bu çalışma, Türkiye’deki ekonomik şoklar ve kriz dönemlerinde, enflasyon tahmininde XGBoost ve ARMA modellerinin performansını incelemektedir. 1994 ekonomik krizi, 2001 finansal krizi, 2008 küresel finansal krizi ve 2018 döviz krizi gibi sık yaşanan krizler ve Türkiye'nin özgün makroekonomik koşulları göz önüne alındığında, enflasyonun doğru tahminini zorlaştırmaktadır. Çalışmada, kriz dönemleri de dahil olmak üzere farklı zaman dilimlerinde XGBoost makine öğrenimi algoritması ile ARMA modelinin performansı karşılaştırılmaktadır. Ampirik bulgular, XGBoost’un büyük veri setleri ve kriz dönemlerinde güçlü performans gösterdiğini, ancak geleneksel ARMA modelinin daha küçük veri setlerinde daha iyi sonuçlar verdiğini ortaya koymaktadır. Özellikle, ARMA modelinden gelen gecikmeli değişkenlerin XGBoost’a entegre edilmesiyle elde edilen tahmin modeli, kriz dönemlerinde ve tüm örneklem dönemi olan 1990:02-2024:06 arasında en etkili yöntem olarak belirlenmiştir. Bu sonuçlar, enflasyon tahmini için kullanılan modellerin veri yapısına duyarlılığını vurgulamakta ve farklı dönemlerdeki etkinliklerini ortaya koymaktadır.

Kaynakça

  • Ahlburg, A.D. (1992). Predicting the job performance of managers: What do the experts know? International Journal of Forecasting, 7(4), 467-472. https://doi.org/10.1016/0169-2070(92)90030-D
  • Akbulut, H. (2022). Forecasting inflation in Turkey: A comparison of time-series and machine learning models. Economic Journal of Emerging Markets, 14(1), 55-71. https://doi.org/10.20885/ejem.vol14.iss1.art5
  • Almosova, A. and Andresen, N. (2023). Nonlinear inflation forecasting with recurrent neural networks. Journal of Forecasting, 42(2), 240–259. https://doi.org/10.1002/for.2901
  • Aras, S. and Lisboa, P. (2022). Explainable inflation forecasts by machine learning models. Expert Systems with Applications, 207, 117982. https://doi.org/10.1016/j.eswa.2022.117982
  • Berument, H.M. and Taşçi, H. (2004). Monetary policy rules in practice: Evidence from Turkey. International Journal of Finance & Economics, 9(1), 33-38. https://doi.org/10.1002/ijfe.219
  • Berument, M.H., Ceylan, N.B. and Dogan, B. (2014). An interest-rate-spread-based measure of Turkish monetary policy. Applied Economics, 46(15), 1804–1813. https://doi.org/10.1080/00036846.2014.884703
  • Bulut, Ü. (2018). Inflation expectations in Turkey: Determinants and roles in missing inflation targets. Journal of Central Banking Theory and Practice, 7(3), 73-90. https://doi.org/10.2478/jcbtp-2018-0024
  • Carriero, A., Galvao, A.B. and Kapetanios, G. (2019). A comprehensive evaluation of macroeconomic forecasting methods. International Journal of Forecasting, 35(4), 1226–1239. https://doi.org/10.1016/j.ijforecast.2019.02.007
  • Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In B. Krishnapuram and M. Shah (Eds.), Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). Papers presented at the KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California. New York: Association for Computing Machinery.
  • Chen, X., Racine, J. and Swanson, N.R. (2001). Semiparametric ARX neural-network models with an application to forecasting inflation. IEEE Transactions on Neural Networks, 12(4), 674–683. Retrieved from https://ieeexplore.ieee.org/
  • Clark, T.E., Huber, F., Koop, G. and Marcellino, M. (2024). Forecasting US inflation using Bayesian nonparametric models. The Annals of Applied Statistics, 18(2), 1421-1444. doi:10.1214/23-AOAS1841
  • Deka, A. and Reşatoğlu, N. (2019). Forecasting foreign exchange rate and consumer price index with Arima model: The case of Turkey. International Journal of Scientific Research and Management, 7(08), 1254-1275. https://doi.org/10.18535/ijsrm/v7i8.em01
  • Domit, S., Monti, F. and Sokol, A. (2019). Forecasting the UK economy with a medium-scale Bayesian VAR. International Journal of Forecasting, 35(4), 1669–1678. https://doi.org/10.1016/j.ijforecast.2018.11.004
  • Dwumfour, R. (2019). Explaining banking spread. Journal of Financial Economic Policy, 11(1), 139-156. https://doi.org/10.1108/jfep-02-2018-0031
  • Faust, J. and Wright, J.H. (2013). Forecasting inflation. In G. Elliott and A. Timmermann (Eds.), Handbook of economic forecasting: Volume 2A (pp. 2–56). Princeton: Princeton University Press.
  • Fildes, R. (1992). Forecasting structural time series models and the Kalman filter. International Journal of Forecasting, 8(4), 635. https://doi.org/10.1016/0169-2070(92)90072-h
  • Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
  • Garcia, M.G., Medeiros, M.C. and Vasconcelos, G.F. (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting, 33(3), 679–693. https://doi.org/10.1016/j.ijforecast.2017.02.002
  • Girdzijauskas, S., Štreimikienė, D., Griesienė, I., Mikalauskienė, A. and Kyriakopoulos, G. (2022). New approach to inflation phenomena to ensure sustainable economic growth. Sustainability, 14(1), 518. https://doi.org/10.3390/su14010518
  • Gono, D. (2023). Silver price forecasting using extreme gradient boosting (XGBoost) method. Mathematics, 11(18), 3813. https://doi.org/10.3390/math11183813
  • Ha, J., Stocker, M. and Yilmazkuday, H. (2020). Inflation and exchange rate passthrough. Journal of International Money and Finance, 105, 102187. https://doi.org/10.1016/j.jimonfin.2020.102187
  • Hauzenberger, N., Huber, F. and Klieber, K. (2023). Real-time inflation forecasting using non-linear dimension reduction techniques. International Journal of Forecasting, 39(2), 901–921. https://doi.org/10.1016/j.ijforecast.2022.03.002
  • Honoré, T. (2018). Monetary policy and inflation: Empirical evidence from Cameroon. International Journal of Economics Finance and Management Sciences, 6(5), 200-207. https://doi.org/10.11648/j.ijefm.20180605.11
  • Hubrich, K. (2005). Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy? International Journal of Forecasting, 21(1), 119–136. https://doi.org/10.1016/j.ijforecast.2004.04.005
  • Hyndman, R.J. and Koehler, A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
  • Ivașcu, C. (2023). Can machine learning models predict inflation? Proceedings of the International Conference on Business Excellence, 17(1), 1748-1756. https://doi.org/10.2478/picbe-2023-0155
  • Ji, Y. (2023). Shock therapy in transition countries: A behavioral macroeconomic approach. Comparative Economic Studies, 65(3), 483-510. https://doi.org/10.1057/s41294-023-00211-z
  • Jumhur, J., Nasrun, M., Agustiar, M. and Wahyudi, W. (2018). Pengaruh jumlah uang beredar, ekspor dan impor terhadap inflasi (Studi empiris pada perekonomian Indonesia). Jurnal Ekonomi Bisnis Dan Kewirausahaan, 7(3), 186-201. https://doi.org/10.26418/jebik.v7i3.26991
  • Kamber, G. and Wong, B. (2020). Global factors and trend inflation. Journal of International Economics, 122, 103265. https://doi.org/10.1016/j.jinteco.2019.103265
  • Kara, H., Küçük Tuğer, H., Özlale, U., Tuğer, B., Yavuz, D. and Yücel, M.E. (2007). Exchange rate pass-through in Turkey: Has it changed and to what extent? (CBRT Research Department Working Paper No. 05/04). Retrieved from https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Research/Working+Paperss/2005/05-04
  • Kemal, M. (2022). Is inflation in Pakistan a monetary phenomenon? The Pakistan Development Review, 45(2), 213-220. https://doi.org/10.30541/v45i2pp.213-220
  • Koop, G.M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177–203. 1537. https://doi.org/10.1002/jae.1270
  • Kose, N., Emirmahmutoglu, F. and Aksoy, S. (2012). The interest rate–inflation relationship under an inflation targeting regime: The case of Turkey. Journal of Asian Economics, 23(4), 476-485. https://doi.org/10.1016/j.asieco.2012.03.001
  • Li, Y.S., Pai, P.F., and Lin, Y.L. (2023). Forecasting inflation rates be extreme gradient boosting with the genetic algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(3), 2211-2220. https://doi.org/10.1007/s12652-022-04479-4
  • Makridakis, S., Spiliotis, E. and Assimakopoulos, V. (2020). The M4 Competition: 100,000-time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54-74. https://doi.org/10.1016/j.ijforecast.2019.04.014
  • McAdam, P. and McNelis, P. (2005). Forecasting inflation with thick models and neural networks. Economic Modelling, 22(5), 848–867. https://doi.org/10.1016/j.econmod.2005.06.002
  • Medeiros, M.C., Vasconcelos, G.F., Veiga, Á. and Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98–119. https://doi.org/10.1080/07350015.2019.1637745
  • Nakamura, E. (2005). Inflation forecasting using a neural network. Economics Letters, 86(3), 373–378. https://doi.org/10.1016/j.econlet.2004.09.003
  • Niyimbanira, F. (2013). An econometric evidence of the interactions between inflation and economic growth in South Africa. Mediterranean Journal of Social Sciences, 4(13), 219-225. https://doi.org/10.5901/mjss.2013.v4n13p219
  • Noh, J., Cheon, J., Seong, H., Kwon, Y. and Yoo, K. (2023). Impacts of smoking ban policies on billiard hall sales in South Korea using objective sales information of a credit card company: Quasi-experimental study. MIR Public Health Surveill, 10, e50466. https://doi.org/10.2196/preprints.50466
  • Ogunc, F., Akdoğan, K., Başer, S., Chadwick, M., Ertug, D., Hulagu, T., … Tekatli, N. (2013). Short-term inflation forecasting models for Turkey and a forecast combination analysis. Economic Modelling, 33, 312-325. https://doi.org/10.1016/j.econmod.2013.04.001
  • Özgür, O. and Akkoç, U. (2022). Inflation forecasting in an emerging economy: Selecting variables with machine learning algorithms. International Journal of Emerging Markets, 17(8), 1889-1908. https://doi.org/10.1108/ijoem-05-2020-0577
  • Peirano, R., Kristjanpoller, W. and Minutolo, M. (2021). Forecasting inflation in Latin American countries using a SARIMA–LSTM combination. Soft Computing, 25(16), 10851-10862. https://doi.org/10.1007/s00500-021-06016-5
  • Pesaran, M.H., Schuermann, T. and Smith, L.V. (2009). Forecasting economic and financial variables with global VARs. International Journal of Forecasting, 25(4), 642-675. https://doi.org/10.1016/j.ijforecast.2009.08.007
  • Rayner, B. and Bolhuis, M. (2020). Deus ex machina? A framework for macro forecasting with machine learning (IMF Working Paper No. 20/45). https://doi.org/10.5089/9781513531724.001
  • Rizinski, M., Peshov, H., Mishev, K., Chitkushev, L., Vodenska, I. and Trajanov, D. (2022). Ethically responsible machine learning in fintech. IEEE Access, 10, 97531-97554. https://doi.org/10.1109/access.2022.3202889
  • Salkuti, S.R. (2020). A survey of big data and machine learning. International Journal of Electrical & Computer Engineering, 10(1), 575-580. http://doi.org/10.11591/ijece.v10i1.pp575-580
  • Stock, J.H. and Watson, M.W. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293–335. https://doi.org/10.1016/S0304-3932(99)00027-6
  • Stock, J.H. and Watson, M.W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking, 39, 3–33. https://doi.org/10.1111/j.1538-4616.2007.00014.x
  • Stock, J.H. and Watson, M.W. (2008). Phillips curve inflation forecasts (NBER Working Paper No. 14322). Retrieved from https://www.nber.org/system/files/working_papers/w14322/w14322.pdf
  • Stock, J.H. and Watson, M.W. (2016). Core inflation and trend inflation. The Review of Economics and Statistics, 98(4), 770–784. https://doi.org/10.1162/REST_a_00608
  • Tursoy, T. and Mar’i, M. (2020). Lead-lag and relationship between money growth and inflation in Turkey: New evidence from a wavelet analysis. Theoretical and Practical Research in Economic Fields, 11(1), 47-57. https://doi.org/10.14505/tpref.v11.1(21).04
  • Yazgan, E. and Yilmazkuday, H. (2007). Monetary policy rules in practice: Evidence from Turkey and Israel. Applied Financial Economics, 17(1), 1-8. https://doi.org/10.1080/09603100600606206
  • Yılmaz, S. (2023). Investigating factors influencing inflation in the USA. Equinox Journal of Economics Business and Political Studies, 10(2), 128-142. https://doi.org/10.48064/equinox.1339198
  • Yusof, N., Nin, L., Kamal, H., Taslim, J. and Zainoddin, A. (2021). Factors that influence the inflation rate in Malaysia. International Journal of Academic Research in Business and Social Sciences, 11(9), 626-637. https://doi.org/10.6007/ijarbss/v11-i9/10838
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonomik Modeller ve Öngörü
Bölüm Makaleler
Yazarlar

Savaş Gayaker 0000-0002-7186-1532

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 2 Ekim 2024
Kabul Tarihi 26 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gayaker, S. (2024). Türkiye’de Ekonomik Şoklar ve Krizler Bağlamında Enflasyon Öngörüsü: XGBOOST ve ARMA Yöntemlerinin Karşılaştırması. Ekonomi Politika Ve Finans Araştırmaları Dergisi, 9(4), 877-895. https://doi.org/10.30784/epfad.1560378