Araştırma Makalesi
BibTex RIS Kaynak Göster

Long Memory Analysis Using the GPH Method in Cryptocurrency Markets: The Case of Bitcoin

Yıl 2024, Cilt: 9 Sayı: 1, 123 - 139, 29.03.2024
https://doi.org/10.30784/epfad.1391497

Öz

In recent years, due to the effects of crises in money markets and the banking sector, trust in central monetary authorities has been shaken and therefore a decentralized system has been sought. On this occasion, the concept of the first cryptocurrency came to the fore in 1998. Crypto markets refer to digital or virtual marketplaces where cryptocurrencies are bought and sold. Cryptocurrencies are decentralized digital assets that use cryptography for secure financial transactions. In 2009, the first transaction was made with Bitcoin, the main cryptocurrency. With the increase in demand for this decentralized virtual currency over time, its market value has also increased rapidly. The aim of the study is to explain the structure of these cryptocurrency markets, whose market value is increasing day by day, and to examine the course of price movements specifically for Bitcoin, the main cryptocurrency. The GPH method was used in the analysis using the weekly data set between the periods 17.11.2019 – 10.03.2024. According to the results obtained, it is observed that the Bitcoin series exhibits a resilient and long-memory structure. It has been determined that there is a relatively high resistance in terms of the value of the memory parameter, and therefore it has been determined that it may take time for price changes to reach the equilibrium level again.

Kaynakça

  • Alpago, H. (2018). Bitcoin’den Selfcoin’e kripto para. Uluslararası Bilimsel Araştırmalar Dergisi, 3(2), 411-428. https://doi.org/10.21733/ibad.419462
  • Al-Yahyaee, K.H., Mensi, W. and Yoon, S.M. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
  • Antonopoulos, A.M. (2014). Mastering Bitcoin. CA: O’Reilly Media.
  • Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5-59. https://doi.org/10.1016/0304-4076(95)01732-1
  • Banerjee, A. and Urga, G. (2005). Modelling structural breaks, long memory and stock market volatility: An overview. Journal of Econometrics, 129, 1-34. https://doi.org/10.1016/j.jeconom.2004.09.001
  • Barışık, S. ve Çevik, E.İ. (2008). Yapısal kırılma testleri ile Türkiye’de işsizlik histerisinin analizi: 1923-2006 dönemi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 14(1), 109-134. Erişim adresi: https://dergipark.org.tr/en/pub/kmusekad/
  • Barkoulas, J.T. and Baum, C.F. (1997). Long memory and forecasting in Euroyen deposit rates. Financial Engineering and the Japanese Markets, 4, 189-201. https://doi.org/10.1023/A:1009630017314
  • Barkoulas, J.T. and Baum, C.F. (1998). Fractional dynamics in Japanese financial time series. Pacific-Basin Finance Journal, 6, 115-124. https://doi.org/10.1016/S0927-538X(97)00028-0
  • Berentsen, A. and Schär, F. (2018). A short introduction to the world of cryptocurrencies. Federal Reserve Bank of St. Louis Review, 100(1), 1-16. https://doi.org/10.20955/r.2018.1-16
  • Choi, K. and Zivot, E. (2007). Long memory and structural changes in the forward discount: An empirical investigation. Journal of International Money and Finance, 26(3), 342-363. https://doi.org/10.1016/j.jimonfin.2007.01.002
  • Davidson, J. and Rambaccussing, D. (2015). A test of the long memory hypothesis based on self-similarity. Journal of Time Series Econometrics, 7(2), 115-141. https://doi.org/10.1515/jtse-2013-0036
  • Davidson, J. and Sibbertsen, P. (2009). Tests of bias in log-periodogram regression. Economics Letters, 102(2), 83-86. https://doi.org/10.1016/j.econlet.2008.11.020
  • ECB. (1998). Report on electronic Money (European Central Bank). Retrieved from https://www.ecb.europa.eu/pub/pdf/other/emoneyen.pdf
  • ECB. (2012). Virtual currency schemes (European Central Bank). Retrieved from http://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf
  • Eğilmez, M. (2017). Kripto paralar, Bitcoin ve blockchain. Erişim adresi: http://www.mahfiegilmez.com/2017/11/kripto-paralar-Bitcoin-ve-blockchain.html
  • Geweke, J. and Porter‐Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4), 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
  • Gil-Alana, L.A. and Toro, J. (2002). Estimation and testing of ARFIMA models in the real exchange rate. International Journal of Finance and Economics, 7, 279–298. https://doi.org/10.1002/ijfe.192
  • Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2), 227-38. https://doi.org/10.1016/0304-4076(80)90092-5
  • Granger, C.W.J. and Ding, Z. (1996). Varieties of long memory models. Journal of Econometrics, 73, 61-77. https://doi.org/10.1016/0304-4076(95)01733-X
  • Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15-39. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
  • Güleç, Ö.F. (2018). Bitcoin ile finansal göstergeler arasındaki ilişkinin incelenmesi. Kırklareli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 7(2), 18-37. Erişim adresi: https://dergipark.org.tr/en/pub/klujfeas/
  • Güleç, T.C. ve Aktaş, H. (2019). Kripto para birimi piyasalarında etkinliğin uzun hafıza ve değişen varyans özelliklerinin testi yoluyla analizi. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 14(2), 491-510. https://doi.org/10.17153/oguiibf.520679
  • Hosking, J.R.M. (1981). Fractional differencing. Biometrika, 68(1), 165-176. https://doi.org/10.1093/biomet/68.1.165
  • Kahyaoğlu, H. ve Duygulu, A.A. (2016). Finansal varlık fiyatlarındaki değişme – Parasal büyüklükler etkileşimi. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 20(1), 63-85. Erişim adresi https://dergipark.org.tr/en/pub/deuiibfd/
  • Kaya Soylu, P., Okur, M., Çatıkkaş, Ö. and Altintig, Z.A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107. https://doi.org/10.3390/jrfm13060107
  • Man, K.S. (2003). Long memory time series and short term forecasts. International Journal of Forecasting, 19, 477-491. https://doi.org/10.1016/S0169-2070(02)00060-2
  • Mensi, W., Al-Yahyaee, K.H. and Kang, S.H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222-230. https://doi.org/10.1016/j.frl.2018.07.011
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://Bitcoin.org/Bitcoin.pdf
  • Neely, C.J. and Rapach, D.E. (2008). Real interest rate persistence: Evidence and implications. Federal Reserve Bank of St. Louis Review, 90(6), 609-641. https://doi.org/10.20955/r.90.609-642
  • Özekenci, S.Y. (2023). Kripto para birimlerinin Bitcoin ile etkileşiminin incelenmesi: Toda-Yamamoto nedensellik testi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 25(45), 1193-1209. Erişim adresi: https://dergipark.org.tr/en/pub/kmusekad/
  • Rambaccussing, D. and Mazibas, M. (2020). True versus spurious long memory in cryptocurrencies. Journal of Risk and Financial Management, 13(9), 186. https://doi.org/10.3390/jrfm13090186
  • Rotman, S. (2014). Bitcoin versus electronic money (World Bank Working Paper No. 88164). Retrieved from https://www.cgap.org/sites/default/files/Brief-Bitcoin-versus-Electronic-Money-Jan-2014.pdf
  • Sagona-Stophel, K. (2016). Bitcoin 101: How to get started with the new trend in virtual currencies. Retrieved from https://www.scribd.com/document/237328281/bitcoin-101
  • Sönmez, A. (2014). Sanal para Bitcoin. The Turkish Online Journal of Design, Art and Communication – TOJDAC, 4(3), 1-14. https://doi.org/10.7456/10403100/001
  • TCMB. (2013). Ödeme ve menkul kıymet mutabakat sistemleri, ödeme hizmetleri ve elektronik para kuruluşları hakkında kanun. (2013, 27 Haziran). Resmi Gazete (Sayı: 28690).Erişim adresi: https://www.tcmb.gov.tr/wps/wcm/connect/2f1f7375-31cb-4c3b-b5c6-72d8561140a7/%C3%96deme+Sistemleri+Kanunu.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-2f1f7375-31cb-4c3b-b5c6-72d8561140a7-nbMvi47
  • Turgutlu, E. (2016). Fisher Hipotezinin tutarlılığının testi: Parçalı durağanlık ve parçalı koentegrasyon analizi. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 19(2), 55-75. Erişim adresi: https://dergipark.org.tr/en/pub/deuiibfd/
  • Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K. and Chen, X. (2007). Detecting long-memory: Monte Carlo simulations and application to daily streamflow processes. Hydrology and Earth System Sciences, 11(2), 851-862. https://doi.org/10.5194/hess-11-851-2007
  • Wu, X., Wu, L. and Chen, S. (2022). Long memory and efficiency of Bitcoin during COVID-19. Applied Economics, 54(4), 375-389. https://doi.org/10.1080/00036846.2021.1962513
  • Xiu, J. and Jin, Y. (2007). Empirical study of ARFIMA model based on fractional differencing. Physica A: Statistical Mechanics and its Applications, 377(1), 138-154. https://doi.org/10.1016/j.physa.2006.11.030
  • Yurttagüler, İ.M. ve Kutlu, S. (2019). İşsizlikte uzun hafıza etkisi ve histerisiz hipotezinin geçerliliği. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20(1), 214-225. Erişim adresi: http://esjournal.cumhuriyet.edu.tr/

Kripto Para Birimi Piyasalarında GPH Yöntemi ile Uzun Hafıza Analizi: Bitcoin Örneği

Yıl 2024, Cilt: 9 Sayı: 1, 123 - 139, 29.03.2024
https://doi.org/10.30784/epfad.1391497

Öz

Son yıllarda, para piyasalarında ve bankacılık sektöründe yaşanan krizlerin etkisiyle merkezi para otoritelerine olan güven sarsılmış ve bu nedenle merkezi olmayan bir sistem arayışına girilmiştir. Bu vesile ile, 1998 yılında ilk kripto para kavramı gündeme gelmiştir. Kripto piyasaları, kripto para birimlerinin alınıp satıldığı dijital veya sanal pazar yerlerini ifade etmektedir. Kripto para birimleri, güvenli finansal işlemler için kriptografi kullanan merkezi olmayan dijital varlıklar olarak karşımıza çıkmaktadır. 2009 yılına gelindiğinde ise ana kripto para birimi olan Bitcoin ile ilk işlem gerçekleştirilmiştir. Merkezi olmayan bu sanal paranın zaman içerisinde talebinde gözlemlenen artış ile birlikte piyasa değeri de hızla yükselmiştir. Çalışmanın amacı, piyasa değeri her geçen gün artan bu kripto para piyasalarının yapısını açıklamak ve ana kripto para birimi olan Bitcoin özelinde fiyat hareketlerinin seyrini incelemektir. 17.11.2019 – 10.03.2024 dönemleri arasında haftalık veri setinin kullanıldığı analizde GPH yöntemi kullanılmıştır. Elde edilen sonuçlara göre, Bitcoin serisinin dirençli ve uzun hafızalı bir yapı sergilediği gözlenmektedir. Hafıza parametresinin aldığı değer itibariyle görece olarak yüksek bir direncin olduğu saptanmış ve bu nedenle de fiyat değişimlerinin tekrar denge seviyesine ulaşmasının zaman alabileceği tespit edilmiştir.

Kaynakça

  • Alpago, H. (2018). Bitcoin’den Selfcoin’e kripto para. Uluslararası Bilimsel Araştırmalar Dergisi, 3(2), 411-428. https://doi.org/10.21733/ibad.419462
  • Al-Yahyaee, K.H., Mensi, W. and Yoon, S.M. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
  • Antonopoulos, A.M. (2014). Mastering Bitcoin. CA: O’Reilly Media.
  • Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5-59. https://doi.org/10.1016/0304-4076(95)01732-1
  • Banerjee, A. and Urga, G. (2005). Modelling structural breaks, long memory and stock market volatility: An overview. Journal of Econometrics, 129, 1-34. https://doi.org/10.1016/j.jeconom.2004.09.001
  • Barışık, S. ve Çevik, E.İ. (2008). Yapısal kırılma testleri ile Türkiye’de işsizlik histerisinin analizi: 1923-2006 dönemi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 14(1), 109-134. Erişim adresi: https://dergipark.org.tr/en/pub/kmusekad/
  • Barkoulas, J.T. and Baum, C.F. (1997). Long memory and forecasting in Euroyen deposit rates. Financial Engineering and the Japanese Markets, 4, 189-201. https://doi.org/10.1023/A:1009630017314
  • Barkoulas, J.T. and Baum, C.F. (1998). Fractional dynamics in Japanese financial time series. Pacific-Basin Finance Journal, 6, 115-124. https://doi.org/10.1016/S0927-538X(97)00028-0
  • Berentsen, A. and Schär, F. (2018). A short introduction to the world of cryptocurrencies. Federal Reserve Bank of St. Louis Review, 100(1), 1-16. https://doi.org/10.20955/r.2018.1-16
  • Choi, K. and Zivot, E. (2007). Long memory and structural changes in the forward discount: An empirical investigation. Journal of International Money and Finance, 26(3), 342-363. https://doi.org/10.1016/j.jimonfin.2007.01.002
  • Davidson, J. and Rambaccussing, D. (2015). A test of the long memory hypothesis based on self-similarity. Journal of Time Series Econometrics, 7(2), 115-141. https://doi.org/10.1515/jtse-2013-0036
  • Davidson, J. and Sibbertsen, P. (2009). Tests of bias in log-periodogram regression. Economics Letters, 102(2), 83-86. https://doi.org/10.1016/j.econlet.2008.11.020
  • ECB. (1998). Report on electronic Money (European Central Bank). Retrieved from https://www.ecb.europa.eu/pub/pdf/other/emoneyen.pdf
  • ECB. (2012). Virtual currency schemes (European Central Bank). Retrieved from http://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf
  • Eğilmez, M. (2017). Kripto paralar, Bitcoin ve blockchain. Erişim adresi: http://www.mahfiegilmez.com/2017/11/kripto-paralar-Bitcoin-ve-blockchain.html
  • Geweke, J. and Porter‐Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4), 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
  • Gil-Alana, L.A. and Toro, J. (2002). Estimation and testing of ARFIMA models in the real exchange rate. International Journal of Finance and Economics, 7, 279–298. https://doi.org/10.1002/ijfe.192
  • Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2), 227-38. https://doi.org/10.1016/0304-4076(80)90092-5
  • Granger, C.W.J. and Ding, Z. (1996). Varieties of long memory models. Journal of Econometrics, 73, 61-77. https://doi.org/10.1016/0304-4076(95)01733-X
  • Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15-39. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
  • Güleç, Ö.F. (2018). Bitcoin ile finansal göstergeler arasındaki ilişkinin incelenmesi. Kırklareli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 7(2), 18-37. Erişim adresi: https://dergipark.org.tr/en/pub/klujfeas/
  • Güleç, T.C. ve Aktaş, H. (2019). Kripto para birimi piyasalarında etkinliğin uzun hafıza ve değişen varyans özelliklerinin testi yoluyla analizi. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 14(2), 491-510. https://doi.org/10.17153/oguiibf.520679
  • Hosking, J.R.M. (1981). Fractional differencing. Biometrika, 68(1), 165-176. https://doi.org/10.1093/biomet/68.1.165
  • Kahyaoğlu, H. ve Duygulu, A.A. (2016). Finansal varlık fiyatlarındaki değişme – Parasal büyüklükler etkileşimi. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 20(1), 63-85. Erişim adresi https://dergipark.org.tr/en/pub/deuiibfd/
  • Kaya Soylu, P., Okur, M., Çatıkkaş, Ö. and Altintig, Z.A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107. https://doi.org/10.3390/jrfm13060107
  • Man, K.S. (2003). Long memory time series and short term forecasts. International Journal of Forecasting, 19, 477-491. https://doi.org/10.1016/S0169-2070(02)00060-2
  • Mensi, W., Al-Yahyaee, K.H. and Kang, S.H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222-230. https://doi.org/10.1016/j.frl.2018.07.011
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://Bitcoin.org/Bitcoin.pdf
  • Neely, C.J. and Rapach, D.E. (2008). Real interest rate persistence: Evidence and implications. Federal Reserve Bank of St. Louis Review, 90(6), 609-641. https://doi.org/10.20955/r.90.609-642
  • Özekenci, S.Y. (2023). Kripto para birimlerinin Bitcoin ile etkileşiminin incelenmesi: Toda-Yamamoto nedensellik testi. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 25(45), 1193-1209. Erişim adresi: https://dergipark.org.tr/en/pub/kmusekad/
  • Rambaccussing, D. and Mazibas, M. (2020). True versus spurious long memory in cryptocurrencies. Journal of Risk and Financial Management, 13(9), 186. https://doi.org/10.3390/jrfm13090186
  • Rotman, S. (2014). Bitcoin versus electronic money (World Bank Working Paper No. 88164). Retrieved from https://www.cgap.org/sites/default/files/Brief-Bitcoin-versus-Electronic-Money-Jan-2014.pdf
  • Sagona-Stophel, K. (2016). Bitcoin 101: How to get started with the new trend in virtual currencies. Retrieved from https://www.scribd.com/document/237328281/bitcoin-101
  • Sönmez, A. (2014). Sanal para Bitcoin. The Turkish Online Journal of Design, Art and Communication – TOJDAC, 4(3), 1-14. https://doi.org/10.7456/10403100/001
  • TCMB. (2013). Ödeme ve menkul kıymet mutabakat sistemleri, ödeme hizmetleri ve elektronik para kuruluşları hakkında kanun. (2013, 27 Haziran). Resmi Gazete (Sayı: 28690).Erişim adresi: https://www.tcmb.gov.tr/wps/wcm/connect/2f1f7375-31cb-4c3b-b5c6-72d8561140a7/%C3%96deme+Sistemleri+Kanunu.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-2f1f7375-31cb-4c3b-b5c6-72d8561140a7-nbMvi47
  • Turgutlu, E. (2016). Fisher Hipotezinin tutarlılığının testi: Parçalı durağanlık ve parçalı koentegrasyon analizi. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 19(2), 55-75. Erişim adresi: https://dergipark.org.tr/en/pub/deuiibfd/
  • Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K. and Chen, X. (2007). Detecting long-memory: Monte Carlo simulations and application to daily streamflow processes. Hydrology and Earth System Sciences, 11(2), 851-862. https://doi.org/10.5194/hess-11-851-2007
  • Wu, X., Wu, L. and Chen, S. (2022). Long memory and efficiency of Bitcoin during COVID-19. Applied Economics, 54(4), 375-389. https://doi.org/10.1080/00036846.2021.1962513
  • Xiu, J. and Jin, Y. (2007). Empirical study of ARFIMA model based on fractional differencing. Physica A: Statistical Mechanics and its Applications, 377(1), 138-154. https://doi.org/10.1016/j.physa.2006.11.030
  • Yurttagüler, İ.M. ve Kutlu, S. (2019). İşsizlikte uzun hafıza etkisi ve histerisiz hipotezinin geçerliliği. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20(1), 214-225. Erişim adresi: http://esjournal.cumhuriyet.edu.tr/
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makro İktisat (Diğer)
Bölüm Makaleler
Yazarlar

İpek Yurttagüler 0000-0003-3368-3787

Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 15 Kasım 2023
Kabul Tarihi 22 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Yurttagüler, İ. (2024). Kripto Para Birimi Piyasalarında GPH Yöntemi ile Uzun Hafıza Analizi: Bitcoin Örneği. Ekonomi Politika Ve Finans Araştırmaları Dergisi, 9(1), 123-139. https://doi.org/10.30784/epfad.1391497