Araştırma Makalesi
BibTex RIS Kaynak Göster

Gönüllü Karbon Açıklaması Tahmininde Finansal Göstergelerin Rolü: Makine Öğrenmesi Yöntemleri ile Karşılaştırmalı Bir Analiz

Yıl 2025, Cilt: 10 Sayı: 3, 949 - 970, 30.09.2025
https://doi.org/10.30784/epfad.1651693

Öz

Sanayi Devriminden bu yana atmosferdeki karbondioksit emisyonları ve ormansızlaşmanın iklim değişikliğinin başlıca nedenleri olduğu düşünülmektedir. Birçok ülke sera gazı emisyonlarını azaltmak için politikalar geliştirmekte ve firmaları karbon emisyonlarını açıklamaya ve azaltmaya teşvik etmektedir. Bu çalışma, makine öğrenmesi yöntemlerini kullanarak, 2016-2023 yılları arasında Borsa İstanbul'da işlem gören firmaların CDP (Carbon Disclosure Project) anketine yanıt verme istekliliği ile ölçülen karbon riski farkındalığının potansiyel finansal belirleyicilerini ortaya çıkarmayı amaçlamaktadır. Çalışmanın bulguları, firmaların finansal göstergelerine dayalı modeller aracılığıyla, doğrusal olmayan, topluluk öğrenmesi tabanlı Rastgele Orman ve XGBoost algoritmaları kullanılarak, gönüllü karbon açıklaması yapma eğilimlerinin %92’nin üzerinde bir doğruluk oranıyla tahmin edilebildiğini ortaya koymaktadır. Ayrıca açıklanabilir yapay zekâ araçları kullanılarak yapılan analizler, özkaynakların toplam borçlara oranı, duran varlıkların özkaynaklara oranı ve uzun vadeli borçların toplam borçlara oranı gibi belirli finansal oranların, XGBoost algoritmasında modelin açıklayıcılığına önemli düzeyde katkı sağladığını göstermektedir. Son olarak, çalışma, makine öğrenmesi algoritmalarının kurumsal karbon emisyonlarının tahmininde yatırımcıların risk analizini iyileştirme potansiyeline ve bu bulgunun sürdürülebilir yatırım stratejilerinin hem kuramsal hem de uygulamalı olarak geliştirilmesine katkı sunabileceğine dikkat çekmektedir.

Kaynakça

  • Alsaifi, K., Elnahass, M. and Salama, A. (2020). Carbon disclosure and financial performance: UK environmental policy. Business Strategy and the Environment, 29(2), 711-726. https://doi.org/10.1002/bse.2426
  • Anquetin, T., Coqueret, G., Tavin, B. and Welgryn, L. (2022). Scopes of carbon emissions and their impact on green portfolios. Economic Modelling, 115, 105951. https://doi.org/10.1016/j.econmod.2022.105951
  • Arendt, C.A., Hyland, E.G. and Piliouras, A. (2021). The geological consequences of global climate change. In D. Alderton and S.A. Elias (Eds.), Encyclopedia of geology second edition (pp. 510–522). New York: Academic Press.
  • Balbal, K.F. (2024). MIPART: A partial decision tree-based method for multiple-instance classification. Applied Sciences, 14(24), 11696. https://doi.org/10.3390/app142411696
  • Benkraiem, R., Shuwaikh, F., Lakhal, F. and Guizani, A. (2022). Carbon performance and firm value of the World's most sustainable companies. Economic Modelling, 116, 106002. https://doi.org/10.1016/j.econmod.2022.106002
  • Birkey, R.N., Michelon, G., Patten, D.M. and Sankara, J. (2016). Does assurance on CSR reporting enhance environmental reputation? An examination in the U.S. context. Accounting Forum, 40(3), 143–152. https://doi.org/10.1016/j.accfor.2016.07.001
  • Bolton, P. and Kacperczyk, M. (2021). Do investors care about carbon risk? Journal of Financial Economics, 142(2), 517-549. https://doi.org/10.1016/j.jfineco.2021.05.008
  • Bose, S., Minnick, K. and Shams, S. (2021). Does carbon risk matter for corporate acquisition decisions? Journal of Corporate Finance, 70, 102058. https://doi.org/10.1016/j.jcorpfin.2021.102058
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Caby, J., Ziane, Y. and Lamarque, E. (2020). The determinants of voluntary climate change disclosure commitment and quality in the banking industry. Technological Forecasting and Social Change, 161, 120282. https://doi.org/10.1016/j.techfore.2020.120282
  • Chen, T. and Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In B. Krishnapuram and M. Shah (Eds.), Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). New York: Association for Computing Machinery.
  • Cho, C.H., Guidry, R.P., Hageman, A.M. and Patten, D.M. (2012). Do actions speak louder than words? An empirical investigation of corporate environmental reputation. Accounting, Organizations and Society, 37(1), 14-25. https://doi.org/10.1016/j.aos.2011.12.001
  • Choi, B.B., Lee, D. and Psaros, J. (2013). An analysis of Australian company carbon emission disclosures. Pacific Accounting Review, 25(1), 58-79. https://doi.org/10.1108/01140581311318968
  • Cooper, S.A., Raman, K.K. and Yin, J. (2018). Halo effect or fallen angel effect? Firm value consequences of greenhouse gas emissions and reputation for corporate social responsibility. Journal of Accounting and Public Policy, 37(3), 226-240. https://doi.org/10.1016/j.jaccpubpol.2018.04.003
  • Costa de Oliveira, A., Marini, N. and Farias, D.R. (2014). Climate change: New breeding pressures and goals. In N.K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (pp. 284–293). New York: Academic Press.
  • Cristianini, N. and Ricci, E. (2008). Support vector machines. In M.-Y. Kao (Ed.), Encyclopedia of algorithms (pp. 928–932). US: Springer.
  • D’Amato, V., D’Ecclesia, R. and Levantesi, S. (2021). Fundamental ratios as predictors of ESG scores: A machine learning approach. Decisions in Economics and Finance, 44(2), 1087-1110. https://doi.org/10.1007/s10203-021-00364-5
  • Deisenroth, M.P., Faisal, A.A. and Ong, C.S. (2020). Mathematics for machine learning. Cambridge: Cambridge University Press.
  • Desai, R., Raval, A., Baser, N. and Desai, J. (2022). Impact of carbon emission on financial performance: Empirical evidence from India. South Asian Journal of Business Studies, 11(4), 450-470. https://doi.org/10.1108/SAJBS-10-2020-0384
  • Dhanalakshmi, P., Palanivel, S. and Ramalingam, V. (2009). Classification of audio signals using SVM and RBFNN. Expert Systems with Applications, 36(3), 6069-6075. https://doi.org/10.1016/j.eswa.2008.06.126
  • Fan, P., Qian, X. and Wang, J. (2023). Does gender diversity matter? Female directors and firm carbon emissions in Japan. Pacific-Basin Finance Journal, 77, 101931. https://doi.org/10.1016/j.pacfin.2022.101931
  • Frank, E., Trigg, L., Holmes, G. and Witten, I.H. (2000). Naive Bayes for regression. Machine Learning, 41, 5-25. https://doi.org/10.1023/A:1007670802811
  • Frost, G., Jones, S. and Yu, M. (2023). Voluntary carbon reporting prediction: A machine learning approach. Abacus, 59(4), 1116-1166. https://doi.org/10.1111/abac.12298
  • Füssel, H.M. and Klein, R.J. (2006). Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 75(3), 301-329. https://doi.org/10.1007/s10584-006-0329-3
  • Griffin, P.A., Lont, D.H. and Sun, E.Y. (2017). The relevance to investors of greenhouse gas emission disclosures. Contemporary Accounting Research, 34(2), 1265-1297. https://doi.org/10.1111/1911- 3846.12298
  • Griffin, P.A., Neururer, T. and Sun, E.Y. (2020). Environmental performance and analyst information processing costs. Journal of Corporate Finance, 61, 101397. https://doi.org/10.1016/j.jcorpfin.2018.08.008
  • Guastella, G., Mazzarano, M., Pareglio, S. and Xepapadeas, A. (2022). Climate reputation risk and abnormal returns in the stock markets: A focus on large emitters. International Review of Financial Analysis, 84, 102365. https://doi.org/10.1016/j.irfa.2022.102365
  • Güneysu, Y. ve Atasel, O.Y. (2022). Karbon emisyonları ile finansal performans arasındaki ilişkinin incelenmesi: BIST100 endeksinde bir araştırma. Fırat Üniversitesi Sosyal Bilimler Dergisi, 32, 3(1183-1193). https://doi.org/10.18069/firatsbed.1125859
  • Haque, F. (2017). The effects of board characteristics and sustainable compensation policy on carbon performance of UK firms. The British Accounting Review, 49(3), 347-364. https://doi.org/10.1016/j.bar.2017.01.001
  • Harker, C., Hassall, M., Lant, P., Rybak, N. and Dargusch, P. (2022). What can machine learning teach us about Australian climate risk disclosures? Sustainability, 14(16), 10000. https://doi.org/10.3390/su141610000
  • Harrison, M. (2024). Effective XGBoost: Optimizing, tuning, understanding, and deploying classification models. Salt Lake City: MetaSnake.
  • History of the convention. (n.d.). United Nations framework convention on climate change. Retrieved from https://unfccc.int/process/the-convention/history-of-the-convention#Climate-Change-in-context
  • Hollindale, J., Kent, P., Routledge, J. and Chapple, L. (2019). Women on boards and greenhouse gas emission disclosures. Accounting & Finance, 59(1), 277-308. https://doi.org/10.1111/acfi.12258
  • Hossin, M. and Sulaiman, M.N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Huang, X., Jin, G. and Ruan, W. (2023). Naive Bayes. In X. Huang, G. Jin and W. Ruan (Eds.), Machine learning safety. Artificial intelligence: Foundations, theory, and algorithms (pp. 95–102). Berlin: Springer Nature.
  • Jung, J., Herbohn, K. and Clarkson, P. (2018). Carbon risk, carbon risk awareness and the cost of debt financing. Journal of Business Ethics, 150, 1151-1171. https://doi.org/10.1007/s10551-016-3207-6
  • Kabir, M.N., Rahman, S., Rahman, M.A. and Anwar, M. (2021). Carbon emissions and default risk: International evidence from firm-level data. Economic Modelling, 103, 105617. https://doi.org/10.1016/j.econmod.2021.105617
  • Kleimeier, S. and Viehs, M. (2021). Pricing carbon risk: Investor preferences or risk mitigation? Economics Letters, 205, 109936. https://doi.org/10.1016/j.econlet.2021.109936
  • Kolk, A. and Pinkse, J. (2005). Business responses to climate change: Identifying emergent strategies. California Management Review, 47(3), 6-20. https://doi.org/10.2307/41166304
  • Krishnamurti, C. and Velayutham, E. (2018). The influence of board committee structures on voluntary disclosure of greenhouse gas emissions: Australian evidence. Pacific-Basin Finance Journal, 50, 65-81. https://doi.org/10.1016/j.pacfin.2017.09.003
  • Kyoto Protocol. (n.d.). Climate change presidency. Retrieved from https://iklim.gov.tr/kyoto-protokolu-i-35#
  • Lee, K.H., Min, B. and Yook, K.H. (2015). The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance. International Journal of Production Economics, 167, 1-11. https://doi.org/10.1016/j.ijpe.2015.05.018
  • Liao, L., Luo, L. and Tang, Q. (2015). Gender diversity, board independence, environmental committee and greenhouse gas disclosure. The British Accounting Review, 47(4), 409-424. https://doi.org/10.1016/j.bar.2014.01.002
  • Loh, W.Y. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14-23. https://doi.org/10.1002/widm.8
  • López-Pacheco, I.Y., Rodas-Zuluaga, L.I., Fuentes-Tristan, S., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., … Parra-Saldívar, R. (2021). Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces. Journal of CO2 Utilization, 53, 101704. https://doi.org/10.1016/j.jcou.2021.101704
  • Lu, W., Zhu, N. and Zhang, J. (2021). The impact of carbon disclosure on financial performance under low carbon constraints. Energies, 14 (14). https://doi.org/10.3390/en14144126
  • Matsumura, E.M., Prakash, R. and Vera-Munoz, S.C. (2014). Firm-value effects of carbon emissions and carbon disclosures. The Accounting Review, 89(2), 695-724. https://doi.org/10.2308/accr-50629
  • Merello, P., Barberá, A. and De la Poza, E. (2022). Is the sustainability profile of FinTech companies a key driver of their value? Technological Forecasting and Social Change, 174, 121290. https://doi.org/10.1016/j.techfore.2021.121290
  • Müller, A.C. and Guido, S. (2016). Introduction to machine learning with Python: A guide for data scientists (1st ed.). California: O'Reilly Media.
  • NASA. (2024). What is climate change? Retrieved from https://science.nasa.gov/climate-change/what-is-climate-change/
  • Nguyen, J.H. and Phan, H.V. (2020). Carbon risk and corporate capital structure. Journal of Corporate Finance, 64, 101713. https://doi.org/10.1016/j.jcorpfin.2020.101713
  • Paris Anlaşması. (n.d.). T.C. Dışişleri Bakanlığı. Retrieved from https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa
  • Pires, J.C.M. (2017). COP21: The algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867–877. https://doi.org/10.1016/J.RSER.2017.05.197
  • Rahat, B. and Nguyen, P. (2022). Risk-adjusted investment performance of green and black portfolios and impact of toxic divestments in emerging markets. Energy Economics, 116, 106423. https://doi.org/10.1016/j.eneco.2022.106423
  • Rainio, O., Teuho, J. and Klén, R. (2024). Evaluation metrics and statistical tests for machine learning. Scientific Reports, 14(1), 6086. https://doi.org/10.1038/s41598-024-56706-x
  • Rogoff, M.J. (2014). Introduction. In M.J. Rogoff (Ed.), Solid waste recycling and processing (pp. 1–9). Amsterdam: William Andrew.
  • Rohleder, M., Wilkens, M. and Zink, J. (2022). The effects of mutual fund decarbonization on stock prices and carbon emissions. Journal of Banking & Finance, 134, 106352. https://doi.org/10.1016/j.jbankfin.2021.106352
  • Safiullah, M., Kabir, M.N. and Miah, M.D. (2021). Carbon emissions and credit ratings. Energy Economics, 100, 105330. https://doi.org/10.1016/j.eneco.2021.105330
  • Sagi, O. and Rokach, L. (2021). Approximating XGBoost with an interpretable decision tree. Information Sciences, 572, 522-542. https://doi.org/10.1016/j.ins.2021.05.055
  • Sangiorgi, I. and Schopohl, L. (2021). Why do institutional investors buy green bonds: Evidence from a survey of European asset managers. International Review of Financial Analysis, 75, 101738. https://doi.org/10.1016/j.irfa.2021.101738
  • Sarang, P. (2023). Naive Bayes. In O. Marques (Ed.), Thinking data science: A data science practitioner's guide (pp. 143–152). Cham: Springer International Publishing.
  • The Paris Agreement. (n.d.). UNFCCC. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement
  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
  • Velte, P., Stawinoga, M. and Lueg, R. (2020). Carbon performance and disclosure: A systematic review of governance-related determinants and financial consequences. Journal of Cleaner Production, 254, 120063. https://doi.org/10.1016/j.jclepro.2020.120063
  • Yu, B., Li, C., Mirza, N. and Umar, M. (2021). Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models. Technological Forecasting and Social Change, 174, 121255. https://doi.org/10.1016/j.techfore.2021.121255
  • Zhang, H. (2004). The optimality of Naive Bayes. Paper presented at the Seventeenth international Florida artificial intelligence research society conference (FLAIRS 2004). Menlo Park, California. Retrieved from https://cdn.aaai.org/FLAIRS/2004/Flairs04-097.pdf

The Role of Financial Indicators in the Prediction of Voluntary Carbon Disclosure: A Comparative Analysis with Machine Learning Methods

Yıl 2025, Cilt: 10 Sayı: 3, 949 - 970, 30.09.2025
https://doi.org/10.30784/epfad.1651693

Öz

Since the Industrial Revolution, carbon dioxide emissions and deforestation have been considered the primary causes of climate change. Many countries are developing policies to reduce greenhouse gas emissions and are encouraging firms to disclose and reduce their carbon emissions. This study aims to identify the potential financial determinants of carbon risk awareness, as measured by the willingness to respond to the CDP (Carbon Disclosure Project) survey, among firms listed on the Borsa Istanbul between 2016 and 2023, using machine learning methods. The findings reveal that whether firms will make voluntary carbon disclosures can be predicted with an accuracy rate exceeding 92% using nonlinear, ensemble learning-based Random Forest and XGBoost algorithms in models based on financial indicators. Furthermore, analyses conducted with explainable artificial intelligence tools indicate that specific financial ratios, such as the ratio of equity to total debt, the ratio of fixed assets to equity, and the ratio of long-term debt to total debt, significantly enhance the model's explainability within the XGBoost algorithm. Finally, the study highlights the potential of machine learning algorithms to improve investors' risk analysis in predicting corporate carbon emissions and demonstrates that this finding contributes to both the theoretical and practical development of sustainable investment strategies.

Kaynakça

  • Alsaifi, K., Elnahass, M. and Salama, A. (2020). Carbon disclosure and financial performance: UK environmental policy. Business Strategy and the Environment, 29(2), 711-726. https://doi.org/10.1002/bse.2426
  • Anquetin, T., Coqueret, G., Tavin, B. and Welgryn, L. (2022). Scopes of carbon emissions and their impact on green portfolios. Economic Modelling, 115, 105951. https://doi.org/10.1016/j.econmod.2022.105951
  • Arendt, C.A., Hyland, E.G. and Piliouras, A. (2021). The geological consequences of global climate change. In D. Alderton and S.A. Elias (Eds.), Encyclopedia of geology second edition (pp. 510–522). New York: Academic Press.
  • Balbal, K.F. (2024). MIPART: A partial decision tree-based method for multiple-instance classification. Applied Sciences, 14(24), 11696. https://doi.org/10.3390/app142411696
  • Benkraiem, R., Shuwaikh, F., Lakhal, F. and Guizani, A. (2022). Carbon performance and firm value of the World's most sustainable companies. Economic Modelling, 116, 106002. https://doi.org/10.1016/j.econmod.2022.106002
  • Birkey, R.N., Michelon, G., Patten, D.M. and Sankara, J. (2016). Does assurance on CSR reporting enhance environmental reputation? An examination in the U.S. context. Accounting Forum, 40(3), 143–152. https://doi.org/10.1016/j.accfor.2016.07.001
  • Bolton, P. and Kacperczyk, M. (2021). Do investors care about carbon risk? Journal of Financial Economics, 142(2), 517-549. https://doi.org/10.1016/j.jfineco.2021.05.008
  • Bose, S., Minnick, K. and Shams, S. (2021). Does carbon risk matter for corporate acquisition decisions? Journal of Corporate Finance, 70, 102058. https://doi.org/10.1016/j.jcorpfin.2021.102058
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Caby, J., Ziane, Y. and Lamarque, E. (2020). The determinants of voluntary climate change disclosure commitment and quality in the banking industry. Technological Forecasting and Social Change, 161, 120282. https://doi.org/10.1016/j.techfore.2020.120282
  • Chen, T. and Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In B. Krishnapuram and M. Shah (Eds.), Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). New York: Association for Computing Machinery.
  • Cho, C.H., Guidry, R.P., Hageman, A.M. and Patten, D.M. (2012). Do actions speak louder than words? An empirical investigation of corporate environmental reputation. Accounting, Organizations and Society, 37(1), 14-25. https://doi.org/10.1016/j.aos.2011.12.001
  • Choi, B.B., Lee, D. and Psaros, J. (2013). An analysis of Australian company carbon emission disclosures. Pacific Accounting Review, 25(1), 58-79. https://doi.org/10.1108/01140581311318968
  • Cooper, S.A., Raman, K.K. and Yin, J. (2018). Halo effect or fallen angel effect? Firm value consequences of greenhouse gas emissions and reputation for corporate social responsibility. Journal of Accounting and Public Policy, 37(3), 226-240. https://doi.org/10.1016/j.jaccpubpol.2018.04.003
  • Costa de Oliveira, A., Marini, N. and Farias, D.R. (2014). Climate change: New breeding pressures and goals. In N.K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (pp. 284–293). New York: Academic Press.
  • Cristianini, N. and Ricci, E. (2008). Support vector machines. In M.-Y. Kao (Ed.), Encyclopedia of algorithms (pp. 928–932). US: Springer.
  • D’Amato, V., D’Ecclesia, R. and Levantesi, S. (2021). Fundamental ratios as predictors of ESG scores: A machine learning approach. Decisions in Economics and Finance, 44(2), 1087-1110. https://doi.org/10.1007/s10203-021-00364-5
  • Deisenroth, M.P., Faisal, A.A. and Ong, C.S. (2020). Mathematics for machine learning. Cambridge: Cambridge University Press.
  • Desai, R., Raval, A., Baser, N. and Desai, J. (2022). Impact of carbon emission on financial performance: Empirical evidence from India. South Asian Journal of Business Studies, 11(4), 450-470. https://doi.org/10.1108/SAJBS-10-2020-0384
  • Dhanalakshmi, P., Palanivel, S. and Ramalingam, V. (2009). Classification of audio signals using SVM and RBFNN. Expert Systems with Applications, 36(3), 6069-6075. https://doi.org/10.1016/j.eswa.2008.06.126
  • Fan, P., Qian, X. and Wang, J. (2023). Does gender diversity matter? Female directors and firm carbon emissions in Japan. Pacific-Basin Finance Journal, 77, 101931. https://doi.org/10.1016/j.pacfin.2022.101931
  • Frank, E., Trigg, L., Holmes, G. and Witten, I.H. (2000). Naive Bayes for regression. Machine Learning, 41, 5-25. https://doi.org/10.1023/A:1007670802811
  • Frost, G., Jones, S. and Yu, M. (2023). Voluntary carbon reporting prediction: A machine learning approach. Abacus, 59(4), 1116-1166. https://doi.org/10.1111/abac.12298
  • Füssel, H.M. and Klein, R.J. (2006). Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 75(3), 301-329. https://doi.org/10.1007/s10584-006-0329-3
  • Griffin, P.A., Lont, D.H. and Sun, E.Y. (2017). The relevance to investors of greenhouse gas emission disclosures. Contemporary Accounting Research, 34(2), 1265-1297. https://doi.org/10.1111/1911- 3846.12298
  • Griffin, P.A., Neururer, T. and Sun, E.Y. (2020). Environmental performance and analyst information processing costs. Journal of Corporate Finance, 61, 101397. https://doi.org/10.1016/j.jcorpfin.2018.08.008
  • Guastella, G., Mazzarano, M., Pareglio, S. and Xepapadeas, A. (2022). Climate reputation risk and abnormal returns in the stock markets: A focus on large emitters. International Review of Financial Analysis, 84, 102365. https://doi.org/10.1016/j.irfa.2022.102365
  • Güneysu, Y. ve Atasel, O.Y. (2022). Karbon emisyonları ile finansal performans arasındaki ilişkinin incelenmesi: BIST100 endeksinde bir araştırma. Fırat Üniversitesi Sosyal Bilimler Dergisi, 32, 3(1183-1193). https://doi.org/10.18069/firatsbed.1125859
  • Haque, F. (2017). The effects of board characteristics and sustainable compensation policy on carbon performance of UK firms. The British Accounting Review, 49(3), 347-364. https://doi.org/10.1016/j.bar.2017.01.001
  • Harker, C., Hassall, M., Lant, P., Rybak, N. and Dargusch, P. (2022). What can machine learning teach us about Australian climate risk disclosures? Sustainability, 14(16), 10000. https://doi.org/10.3390/su141610000
  • Harrison, M. (2024). Effective XGBoost: Optimizing, tuning, understanding, and deploying classification models. Salt Lake City: MetaSnake.
  • History of the convention. (n.d.). United Nations framework convention on climate change. Retrieved from https://unfccc.int/process/the-convention/history-of-the-convention#Climate-Change-in-context
  • Hollindale, J., Kent, P., Routledge, J. and Chapple, L. (2019). Women on boards and greenhouse gas emission disclosures. Accounting & Finance, 59(1), 277-308. https://doi.org/10.1111/acfi.12258
  • Hossin, M. and Sulaiman, M.N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Huang, X., Jin, G. and Ruan, W. (2023). Naive Bayes. In X. Huang, G. Jin and W. Ruan (Eds.), Machine learning safety. Artificial intelligence: Foundations, theory, and algorithms (pp. 95–102). Berlin: Springer Nature.
  • Jung, J., Herbohn, K. and Clarkson, P. (2018). Carbon risk, carbon risk awareness and the cost of debt financing. Journal of Business Ethics, 150, 1151-1171. https://doi.org/10.1007/s10551-016-3207-6
  • Kabir, M.N., Rahman, S., Rahman, M.A. and Anwar, M. (2021). Carbon emissions and default risk: International evidence from firm-level data. Economic Modelling, 103, 105617. https://doi.org/10.1016/j.econmod.2021.105617
  • Kleimeier, S. and Viehs, M. (2021). Pricing carbon risk: Investor preferences or risk mitigation? Economics Letters, 205, 109936. https://doi.org/10.1016/j.econlet.2021.109936
  • Kolk, A. and Pinkse, J. (2005). Business responses to climate change: Identifying emergent strategies. California Management Review, 47(3), 6-20. https://doi.org/10.2307/41166304
  • Krishnamurti, C. and Velayutham, E. (2018). The influence of board committee structures on voluntary disclosure of greenhouse gas emissions: Australian evidence. Pacific-Basin Finance Journal, 50, 65-81. https://doi.org/10.1016/j.pacfin.2017.09.003
  • Kyoto Protocol. (n.d.). Climate change presidency. Retrieved from https://iklim.gov.tr/kyoto-protokolu-i-35#
  • Lee, K.H., Min, B. and Yook, K.H. (2015). The impacts of carbon (CO2) emissions and environmental research and development (R&D) investment on firm performance. International Journal of Production Economics, 167, 1-11. https://doi.org/10.1016/j.ijpe.2015.05.018
  • Liao, L., Luo, L. and Tang, Q. (2015). Gender diversity, board independence, environmental committee and greenhouse gas disclosure. The British Accounting Review, 47(4), 409-424. https://doi.org/10.1016/j.bar.2014.01.002
  • Loh, W.Y. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14-23. https://doi.org/10.1002/widm.8
  • López-Pacheco, I.Y., Rodas-Zuluaga, L.I., Fuentes-Tristan, S., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., … Parra-Saldívar, R. (2021). Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces. Journal of CO2 Utilization, 53, 101704. https://doi.org/10.1016/j.jcou.2021.101704
  • Lu, W., Zhu, N. and Zhang, J. (2021). The impact of carbon disclosure on financial performance under low carbon constraints. Energies, 14 (14). https://doi.org/10.3390/en14144126
  • Matsumura, E.M., Prakash, R. and Vera-Munoz, S.C. (2014). Firm-value effects of carbon emissions and carbon disclosures. The Accounting Review, 89(2), 695-724. https://doi.org/10.2308/accr-50629
  • Merello, P., Barberá, A. and De la Poza, E. (2022). Is the sustainability profile of FinTech companies a key driver of their value? Technological Forecasting and Social Change, 174, 121290. https://doi.org/10.1016/j.techfore.2021.121290
  • Müller, A.C. and Guido, S. (2016). Introduction to machine learning with Python: A guide for data scientists (1st ed.). California: O'Reilly Media.
  • NASA. (2024). What is climate change? Retrieved from https://science.nasa.gov/climate-change/what-is-climate-change/
  • Nguyen, J.H. and Phan, H.V. (2020). Carbon risk and corporate capital structure. Journal of Corporate Finance, 64, 101713. https://doi.org/10.1016/j.jcorpfin.2020.101713
  • Paris Anlaşması. (n.d.). T.C. Dışişleri Bakanlığı. Retrieved from https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa
  • Pires, J.C.M. (2017). COP21: The algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867–877. https://doi.org/10.1016/J.RSER.2017.05.197
  • Rahat, B. and Nguyen, P. (2022). Risk-adjusted investment performance of green and black portfolios and impact of toxic divestments in emerging markets. Energy Economics, 116, 106423. https://doi.org/10.1016/j.eneco.2022.106423
  • Rainio, O., Teuho, J. and Klén, R. (2024). Evaluation metrics and statistical tests for machine learning. Scientific Reports, 14(1), 6086. https://doi.org/10.1038/s41598-024-56706-x
  • Rogoff, M.J. (2014). Introduction. In M.J. Rogoff (Ed.), Solid waste recycling and processing (pp. 1–9). Amsterdam: William Andrew.
  • Rohleder, M., Wilkens, M. and Zink, J. (2022). The effects of mutual fund decarbonization on stock prices and carbon emissions. Journal of Banking & Finance, 134, 106352. https://doi.org/10.1016/j.jbankfin.2021.106352
  • Safiullah, M., Kabir, M.N. and Miah, M.D. (2021). Carbon emissions and credit ratings. Energy Economics, 100, 105330. https://doi.org/10.1016/j.eneco.2021.105330
  • Sagi, O. and Rokach, L. (2021). Approximating XGBoost with an interpretable decision tree. Information Sciences, 572, 522-542. https://doi.org/10.1016/j.ins.2021.05.055
  • Sangiorgi, I. and Schopohl, L. (2021). Why do institutional investors buy green bonds: Evidence from a survey of European asset managers. International Review of Financial Analysis, 75, 101738. https://doi.org/10.1016/j.irfa.2021.101738
  • Sarang, P. (2023). Naive Bayes. In O. Marques (Ed.), Thinking data science: A data science practitioner's guide (pp. 143–152). Cham: Springer International Publishing.
  • The Paris Agreement. (n.d.). UNFCCC. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement
  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
  • Velte, P., Stawinoga, M. and Lueg, R. (2020). Carbon performance and disclosure: A systematic review of governance-related determinants and financial consequences. Journal of Cleaner Production, 254, 120063. https://doi.org/10.1016/j.jclepro.2020.120063
  • Yu, B., Li, C., Mirza, N. and Umar, M. (2021). Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models. Technological Forecasting and Social Change, 174, 121255. https://doi.org/10.1016/j.techfore.2021.121255
  • Zhang, H. (2004). The optimality of Naive Bayes. Paper presented at the Seventeenth international Florida artificial intelligence research society conference (FLAIRS 2004). Menlo Park, California. Retrieved from https://cdn.aaai.org/FLAIRS/2004/Flairs04-097.pdf
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre ve İklim Finansmanı, Finansal Öngörü ve Modelleme, Yatırımlar ve Portföy Yönetimi
Bölüm Makaleler
Yazarlar

Yunus Emre Akdoğan 0000-0002-1761-2869

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 5 Mart 2025
Kabul Tarihi 4 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 3

Kaynak Göster

APA Akdoğan, Y. E. (2025). The Role of Financial Indicators in the Prediction of Voluntary Carbon Disclosure: A Comparative Analysis with Machine Learning Methods. Ekonomi Politika ve Finans Araştırmaları Dergisi, 10(3), 949-970. https://doi.org/10.30784/epfad.1651693