Araştırma Makalesi
BibTex RIS Kaynak Göster

Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi

Yıl 2018, , 208 - 215, 04.12.2018
https://doi.org/10.32707/ercivet.477291

Öz

Mikrobiyal patojenlerde antibiyotik dirençliliği dünyada ciddi bir sağlık sorunu haline gelmiştir. Son yıllarda, anti-mikrobiyal aktiviteye sahip yeni bileşikler geliştirmek için daha etkili alternatif tedavi yaklaşımları araştırılmaktadır. Na-nopartiküller (NP) sahip oldukları üstün özellikler nedeniyle, antibakteriyel etki, kanser terapisi, ilaç ve gen taşıyıcı sis-temler gibi birçok alanda uygulama bulmaktadır. Bu çalışmada, hidrotermal yöntemle sentezlenen yeni nesil bir anti-mikrobiyal ajan olarak kitosan-gümüş nanopartükülü (K-Ag-NP) ve kitosan-Gümüş-Grafen Oksit (K-Ag-GO) nanokom-poziti (NK) kullanılmıştır. Bu maddeler UV-visible (UV-vis) absorpsiyon spektroskopisi ve taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. Aynı zamanda bu maddelerin Escherichia coli ATCC 35218, Staphylococcus aureus ATCC 25923, Streptococcus. mutans ATCC 68175, Bacillus subtilis ATCC 6633, Candida albicans ATCC 90028 suşla-rına karşı antimikrobiyal aktiviteleri disk difüzyon tekniği kullanılarak araştırılmıştır. Elde ettiğimiz veriler bu maddelerin antibakteriyel etkiye sahip olduğunu göstermiştir.

Kaynakça

  • 1. Akagi T, Baba M, Akashi M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: Regulation of immune responses by nanoparticle-based vaccine. Kunugi S, Yamaoka T. eds. In: Polymers in Nanomedicine. Berlin Heidelberg: Springer-Verlag, 2011; p.31-64. 2. Bedeloğlu A, Taş M. Grafen ve grafen üretim yöntemleri. AKU J Sci Eng 2016, 16(3): 544-54. 3. Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Zhang J. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials. Carbon 2013; 65:1-6. 4. Cai X, Lin M, Tan S, Mai W, Zhang Y, Liang Z, Lin Z, Zhang X. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 2012; 50:3407-15. 5. Carmona D, Lalueza P, Balas F, Arruebo M, Santamaría J. Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Micropor Mesopor Mat 2012; 161:84-90. 6. Chan WC. Bionanotechnology progress and advances. Biol Blood Marrow Transplant 2006; 12:87-91. 7. Chang Y, Yang, ST, Liu JH, Dong, E, Wang Y, Cao A. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 2011; 200:201-10. 8. Chen Y, Mohanraj VJ, Parkin, JE. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Int J Pept Res Ther 2003; 10:621-9. 9. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broadspectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014; 6:1879-89. 10. CLSI. Performance standards for antimicrobial disk susceptibility test. Approved standard: M02-A10.10th ed. Vol. 29, Clinical and Laboratory Standards Institute, Wayne, PA: 2009; p.1. 11. Çırpanlı Y. Kamptotesin içeren polimerik ve oligosakkarit bazlı nanopartiküler formülasyonların geliştirilmesi ve in vitro-in vivo değerlendirilmesi, Doktora tezi, Hacettepe Ü. Sağlık Bilimleri Enstitüsü, Ankara 2009; p. 4-15. 12. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 2011; 83: 16-22. 13. Demir A, Seventekin N. Kitin, kitosan ve genel kullanım alanları. Tekstil Tekno Elek Derg 2009; 3: 92-103. 14. Derman Acar S. Canine parvovirus’e ait antijenik özellikli sentetik peptidlerin sentezi ve biyokonjugatlarının geliştirilmesi, Doktora tezi, Yıldız Teknik Ü. Fen Bilimleri Enstitüsü, İstanbul 2012; p. 45-53. 15. Derman S, Kızılbey K, Akdeste ZM. Polymeric nanoparticles. J Eng Nat Sci 2013; 31:107-20. 16. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 1996; 13: 1838-45. 17. Desai MP, Labhasetwar V, Walter E, Levy, RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14: 1568-73. 18. Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: Chemistry, properties and applications. J Sci Ind Res 2004; 63: 20-31. 19. Freitas RA. What is nanomedicine? Nanomedicine 2005; 51: 325-41. 20. Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS. Defining the drug incorporation properties of PLA–PEG nanoparticles. Int J Pharm 2000; 199: 95-110. 21. Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 2012; 7: 1805-18. 22. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotech 2004; 4: 484-8. 23. Kong M, Chen XG, Xıng K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 2010; 144: 51-63. 24. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 2011; 1810: 361-73. 25. Landry BK, Nadworny PL, Omotoso OE, Maham Y, Burrell JC, Burrell RE. The Kinetics of thermal instability in nanocrystalline silver and the effect of heat treatment on the antibacterial activity of nanocrystalline silver dressings. Biomaterials 2009; 30: 6929-39. 26. Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 2010; 10: 577-83. 27. Liu L, Liu J, Wang Y, Yan X, Sun DD. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 2011; 35: 1418-23. 28. Ma J, Zhang J, Xiong Z, Yong Y, Zhao X. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 2011; 21: 3350–2. 29. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed: Nanotechnol Biol Med 2012; 8: 916-24. 30. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol 2005; 16: 2346-253. 31. No HK, Meyers SP, Prinyawiwatkul W, Xu Z. Applications of chitosan for improvement of quality and shelf life of food: A review. J Food Sci 2007; 72: 87-100. 32. Ocsoy I, Paret ML, Arslan Ocsoy M, Kunwar S, Chen T, You M, Tan W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACSNano 2013; 7(10): 8972-80. 33. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 2004; 339: 2693-700. 34. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73: 1712-20. 35. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (d, l-lactide-coglycolide) nanoparticles. Int J Pharm 2003; 262: 1-11. 36. Panyam J, Williams D, Dash A, Leslie‐Pelecky D, Labhasetwar V. Solid‐state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004; 93: 1804-14. 37. Perez-Diaz M, Alvarado-Gomez E, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, Ganem-Rondero A, Martinez-Castanon G, Zavala-Alonso N, Martinez-Gutierrez F. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater Sci Eng C Mater Biol Appl 2016; 60: 317-23. 38. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003; 4: 1457-65. 39. Raffi M, Hussain F, Bhatti T, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E.coli ATCC-15224, J Mater Sci Technol 2008; 24: 192-6. 40. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27: 76-83. 41. Rajalakshmi R, Indira Muzib Y, Aruna U, Vinesha V, Rupangada V, Krishna moorthy SB. Chitosan nanoparticles - an emerging trend in nanotechnology. Int J Drug Deliv 2014; 6(3):204-29. 42. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size control parameters. Progress Polymer Sci 2011; 36: 887-913. 43. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 1992; 27: 72-9. 44. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski, WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70: 1-20. 45. Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int J Nanomedicine 2010; 5: 753-62. 46. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems, J Occup Med Toxicol 2007; 2(16): 1-6. 47. Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci 2003, 100: 9138-43. 48. Torres-Giner S, Ocio M, Lagaron JM. Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 2008; 8: 303-14. 49. Veerapandian M, Zhang L, Krishnamoorthy K, Yun K. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient antibacterials. Nanotechnol 2013; 24 (39): 395-706. 50. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83: 761-9. 51. Zhao G, Stevens Jr SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals 1998, 11: 27-32. 52. Zhu Z, Su M, Ma L, Ma L, Liu D, Wang Z. Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta 2013; 117: 449-55.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Dilşad Onbaşlı

Yayımlanma Tarihi 4 Aralık 2018
Gönderilme Tarihi 20 Temmuz 2017
Kabul Tarihi 26 Aralık 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Onbaşlı, D. (2018). Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 15(3), 208-215. https://doi.org/10.32707/ercivet.477291
AMA Onbaşlı D. Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. Aralık 2018;15(3):208-215. doi:10.32707/ercivet.477291
Chicago Onbaşlı, Dilşad. “Kitosan-Gümüş Nanopartikülü Ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 15, sy. 3 (Aralık 2018): 208-15. https://doi.org/10.32707/ercivet.477291.
EndNote Onbaşlı D (01 Aralık 2018) Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 15 3 208–215.
IEEE D. Onbaşlı, “Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi”, Erciyes Üniv Vet Fak Derg, c. 15, sy. 3, ss. 208–215, 2018, doi: 10.32707/ercivet.477291.
ISNAD Onbaşlı, Dilşad. “Kitosan-Gümüş Nanopartikülü Ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 15/3 (Aralık 2018), 208-215. https://doi.org/10.32707/ercivet.477291.
JAMA Onbaşlı D. Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. 2018;15:208–215.
MLA Onbaşlı, Dilşad. “Kitosan-Gümüş Nanopartikülü Ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, c. 15, sy. 3, 2018, ss. 208-15, doi:10.32707/ercivet.477291.
Vancouver Onbaşlı D. Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. 2018;15(3):208-15.