BibTex RIS Kaynak Göster

Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi

Yıl 2014, Cilt: 30 Sayı: 4, 275 - 284, 01.08.2014

Öz

Uzun zamandır bir ihtiyaç kaynağı olan nikel, teknolojinin gelişmesi ile yeni ürünlerin önemli bir hammaddesi olmuştur. Cevherleşme bakımından sadece %1-3 oranında Ni içeriğine sahip yataklar üretilebilir konumundadır. Dünya nikel kaynaklarının %28’i sülfürlü ve %72’si lateritik yataklardan oluşmaktadır. Ancak, birincil nikel üretimi söz konusu olduğunda sülfürlü kaynakların kullanımı %58 olup, lateritik kaynaklar ise %42 gibi düşük bir değerde kalmaktadır. Bunun yanı sıra, sülfürlü yataklardaki rezervlerin azalmış olması da lateritik yatakların önemini artırmaktadır. Lateritik nikel cevherlerinden nikel kazanımında en basit geleneksel madencilik, cevher yatağından cevherin çıkarılarak kırma ve öğütme gibi ufalama işleminden geçirilmesi ve daha sonra cevherden metalleri kazanmak için pirometalurjik ve/veya hidrometalurjik yöntemlerin kullanılmasını kapsamaktadır. Cevherden metallerin geleneksel kazanımında yüksek sıcaklıklar (pirometalurji) ve kimyasallar (hidrometalurji) kullanılmakta olup, bu tekniklerin çevresel ve sağlık yönünden zararları bulunmaktadır. Bu nedenle, son 50 yıl içerisinde biyoteknolojik gelişmelerden dolayı madencilik endüstrisinde biyolojik kazanım teknikleri büyük oranda önem kazanmış ve endüstride giderek artan bir uygulama alanı bulmuştur. Biyoliç, düşük tenörlü cevherlerden metallerin kazanılmasında basit, ekonomik ve çevreye dost bir yöntemdir. Lateritik nikel cevherleri oldukça yüksek oranda demir içermesinden dolayı, hidrometalurjik proseslerde H2SO4 tüketimi önemli şekilde artmaktadır. Lateritik nikel cevherinden nikelin kazanımında biyoliç yönteminin uygulanması bu asit tüketiminin ekonomik olarak olumsuz etkilerini azaltması ve ayrıca çevresel açıdan daha kontrollü hale getirmesini sağlayabilir. Bu yazıda, lateritik cevherlerden nikel kazanımında biyoliç uygulamaları ve son gelişmeler incelenmiştir.

Kaynakça

  • Moskalyk, R.R., Alfantazi, A.M., 2002. Nickel laterite processing and electrowinning practice. Minerals Engineering 15, 593–605.
  • Elias, M., 2002. Nickel laterite deposits — geological overview, resources and exploitation. In: Cooke, C.R., Pontgratz, J. (Eds.), Giant Ore Deposits: Characteristics, Genesis and Exploitation. : CODES Special Publication. Centre for Ore Deposit Research, University of Tasmania,205–220.
  • Gleeson, S.A., Butt, C.R.M., Elias, M., 2003. Nickel laterites: review. Society of Economic Geologists (SEG) Newsletter, Number 54. Available from www.segweb.org.
  • Dalvi, A.D., Bacon, W.G., Osborne, R.C., 2004. The past and the future of nickel laterites. PDAC 2004 International Convention — Trade Show and Investors Exchange. Available from http://www.pdac.ca/pdac/publications/papers/2004/techprgm dalvi- bacon.pdf.
  • Watling, 2008. The bioleaching of nickel–copper sulphides.
  • Simate, G.S., Ndlovu, S., Gericke, M., 2009a. The effect of elemental sulphur and pyrite on the leaching of nickel laterites using chemolithotrophic bacteria. Hydrometallurgy Conference 2009: The Southern African Institute of Mining and Metallurgy.
  • TMMOB Türkiye Maden Mühendisleri Odası. 2012. Nikel Raporu,52.
  • Golightly, J.P., 1981. Nickeliferous laterite deposits. Economic Geology 75, 710–735.
  • Alibhai, K.A.K., Dudeney, A.W.L., Leak, D.J., Agatzini, S., Tzeferis, P., 1993. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiology Reviews 11, 87–96.
  • Ağaçayak, T., 2008; Karaçam (Eskişehir) Lateritik Nikel Cevherinin Fiziksel ve Kimyasal Yöntemlerle Zenginleştirilmesi, Doktora Tezi, Selçuk Üniversitesi Maden Mühendisliği Anabilim Dalı, Konya.
  • Burger, P.A., 1996. Origins and Characteristics of Lateritic Nickel Deposits, Nickel 96: Mineral to Markert, Aus. I. M. M. (Melbourne), pp. 179–183.
  • Valix, M., Usai, F., Malik, R., 2001a. Fungal bioleaching of low grade laterite ores. Minerals Engineering 14 (2), 197–203.
  • Brand, N.W., Butt, C.R.M., Elias, M., 1998. Nickel laterites: classification and features. AGSO Journal of Australian Geology and Geophysics 17 (4), 81– 88.
  • Camuti, K.S., Riel, R.G., 1996. Mineralogy of Murrin Murrin nickel laterites. In: Grimsey, E.J., Neuss, I. (Eds.), Proceedings Nickel 1996. The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 209–210.
  • Göveli, A., 2006. Nickel Extraction From Gördes Laterites By Hydrochloric Acid Leaching, MSc thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, s: 102, Ankara.
  • Betteridge, W., 1984. Nickel and Its Alloys, John Willey & Sons,161.
  • Sauvage Gabriel F., 2008. Overview The Future demand of Ferronickel Market, The Euronickel Conference, Moskova. G.M., 18. Mudd, 2010. Global trends and environmental issues in nickel mining Sulfides versus laterites, Ore Geology Reviews, 38, 9–26.
  • DPT Madencilik Özel İhtisas Komisyonu, 2006; Dokuzuncu Madencilik Özel İhtisas Komisyonu Raporu.. Plânı (2007-2013)
  • Acevedo, F., 2000. The use of reactors in biomining processes. Electronic Journal of Biotechnology 3 (3), 184–194.
  • Uzun, E., 2011. Karaçam Lateritik Nikel Cevherinin H2SO4, HCl ve HCl-C2H5OH-H2O Ortamlardaki Davranımı, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü , Yüksek Lisans Tezi, 87, Ankara.
  • Glazer, A.N., Nikaido, H., 2007. Microbial Biotechnology: Microbiology. Cambridge University Press, New York Canterford, J.H., 1972. The extractive metallurgy of nickel. Reviews of Pure and Applied Chemistry 22, 13–46. of Applied
  • Tzeferis, P., 1992. Mechanisms important for bioleaching microorganisms. Metalleiologika Metallourgika Chronika 2 (1), 85–107. accumulation by
  • Panda, S.C., Sukla, L.B., Rao, P.K., Jena, P.K., 1980. Extraction of nickel through reduction roasting and ammoniacal leaching of lateritic nickel ores. Transactions of the Indian Institute of Metals 33, 161–165.
  • Chander, S., Sharma, V.N., 1981. Reduction roasting/ammonia laterites. Hydrometallurgy 7, 315–327. of nickeliferous
  • Georgiou, D., Papangelakis, V.G., 1998. Sulphuric acid pressure leaching of limonitic laterite: chemistry and kinetics. Hydrometallurgy 49, 23– 46. 27. Rubisov, D.H., Papangelakis, V.G., 2000. Sulphuric acid pressure leaching of laterites — a comprehensive model of a continuous autoclave. Hydrometallurgy 58, 89–101
  • Rubisov, D.H., Krowinkel, J.M., Papangelakis, V.G., 2000. Sulphuric acid pressure leaching of laterites — universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends. Hydrometallurgy 58, 1–11.
  • Kar, B.B., Swamy, Y.V., Murthy, B.V.R., 2000. Design of experiments to study the extraction of nickel from lateritic ore by sulphatization using sulphuric acid. Hydrometallurgy 56, 387–394.
  • Lee, H.Y., Kim, S.G., Oh, J.K., 2005. Electrochemical leaching Hydrometallurgy 77, 263–268. from low grade laterites.
  • Xu, Y., Xie, Y., Yan, L., Yang, R., 2005. A new method for recovering valuable metals from low-grade nickeliferous oxide ores. Hydrometallurgy 80, 280– 285.
  • Simate, G.S., Ndlovu, S., Walubita, L.F., 2010. The fungal and chemolithotrophic leaching of nickel laterites — Challenges and opportunities, Hydrometallurgy 103 ,150–157.
  • Rubio, A. ve Garcia Frutos, F.J., 2002.Bioleaching Capacity of an Extremely Thermophilic Culture for Chalcopyritic Materials, Minerals Engineering, 15, 689- 694.
  • Sandström, A., Petersson, S., 1997. Bioleaching of a Complex Sulphide Ore with Moderate Thermophilic and Extreme Thermophilic Microorganisms, 46, 181-190. 35. Çiftçi,
  • H., 2003.Asidofilik Bakteriler Yardımıyla
  • Kalkopirit Biyoliçinde Katı Oranının Etkisi, Yüksek
  • lisans tezi, S.D.Ü. Fen Bilimleri Enstitüsü, Isparta, 121 s.
  • Hsu, C.H., Harrison, R.G., 1995. Bacterial Leaching of Zinc and Copper from Mining Wastes, 37, 169-179.
  • Akçil, A. ve Çiftçi, H., 2003. Küre Piritli Bakır Cevherinin Liçinde Sülfür ve Demir Oksidasyonu Yapan Bakterilerin Metal Kazanımına Etkisi, Yerbilimleri Dergisi, 28, 145-154.
  • Akcil, A., 2004. Potential bioleaching developments towards commercial reality: Turkish metal mining’s future, Minerals Engineering, 17, 477-480.
  • Rawlings, D.E., 2004. Microbially assisted dissolution of minerals and its use in the mining industry. Journal of Applied Chemistry 76 (4), 847–859.
  • Ndlovu, S., 2008. Biohydrometallurgy for sustainable development in the African mineral industry.
  • Tzeferis, P.G., 1994. Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites. International Journal of Mineral Processing 42, 267–283.
  • Gadd, G.M., 2001. Microbial metal transformations: minireview. The Journal of Microbiology 39 (2), 83–88.
  • Bosecker, K., 1986. Leaching of lateritic nickel ores with heterotrophic microorganisms. In: Lawrence, R.W., Branion, R.M.R., Ebner, H.G. (Eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, pp. 367–382.
  • Bosecker, K., 1989. Bioleaching of valuable metals from silicate ores and silicate waste products. In: Salley, J., McCready, Biohydrometallurgy. Proceedings. CANMET, Ottawa, pp. 15–24. International Symposium
  • Bosecker, K., 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews 20, 591– 604
  • Franz, A., Burgstaller, W., Schinner, F., 1991. Leaching
  • with P. simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Applied and Environment Microbiology 57, 769–774.
  • Coto, O., Bruguera, N., Abín, L., Gamboa, J., Gómez, Y., 2001. Bioleaching of Cuban nickeliferrous serpentinite. In: Ciminelli, V.S.T., Garcia, Fundamentals, Development, Part A. Elsevier, Amsterdam, pp. 175–182.
  • Biohydrometallurgy. : and Sustainable
  • Coto, O., Gutiérrez, D., Abín, L., Marrero, J., Bosecker, K., 2003. Influence of pH, Mg2+ and Mn2+ on the bioleaching of nickel laterite ore using the fungus Aspergillus niger O5. In: Tsezos, M., Hatzikioseyian, Biohydrometallurgy: A Sustainable Technology in Evolution. Part 1. University of Athens, Greece, pp. 124–134. Remoundaki, E. (Eds.),
  • Coto, O., Peguero, M., Abín, L., Bruguera, N., Marrero, J., Bosecker, K., 2005. Bioleaching of laterite by Aspergillus niger strain O5, an acidophilic, nickel and cobalt resistant fungus. In: Harrison, S.T.L., Rawlings, D.E., Petersen, J. (Eds.), Proceedings Biohydrometallurgy Symposium. Cape Town, South Africa, pp. 357–364. 16th International
  • Valix, M., Tang, J.Y., Cheung, W.H., 2001b. The effects of mineralogy on the biological leaching of nickel laterite ores. Minerals Engineering 14 (12), 1629–1635.
  • Valix, M., Tang, J.Y., Malik, R., 2001c. Heavy metal tolerance of fungi. Minerals Engineering 14 (5), 499–505.
  • Valix, M., Tang, J.Y., Malik, R., 2001d. The electro- sorption properties of nickel on laterite gangue leached with an organic chelating acid. Minerals Engineering 14 (2), 2005–2215.
  • Weed, S.B., Davey, C.B., Cook, M.G., 1969. Weathering of mica by fungi. Soil Science Society of America Journal 33, 702–706.
  • Berthelin, J., 1983. Microbial weathering processes. In: Krumbein, W.E. (Ed.), Microbial Geochemistry. Blackwell, Oxford, pp. 223–262.
  • McKenzie, D.I., Denys, L., Buchanan, A., 1987. The solubilisation of nickel, cobalt and iron from laterites by means of organic chelating acids at low pH. International Journal of Mineral Processing 21, 275– 292.
  • Le, L., Tang, J.A., Ryan, D., Valix, M., 2006. Bioleaching nickel laterite ores using multimetal tolerant Aspergillus foetidus organism. Minerals Engineering 19, 1259–1265.
  • Tang, J.A., Valix, M., 2006. Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Minerals Engineering 19 (12), 1274–1279.
  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B., 2006. Microbial extraction of nickel from Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85, 1–8. by niger and optimization of parameters,
  • Hallberg, K.B., Grail, B.M., du Plessis, C.A., Johnson, D.B., 2011. Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites, Minerals Engineering, 24, 620–624.
  • Yang, C., Qin, W., Lai, S., Wang, J., Zhang, Y., Jiao, F., Ren, L., Zhuang, T., Chang, Z., 2010. Bioleaching of a low grade nickel–copper–cobalt sulfide ore, Hydrometallurgy, 106, 32–37.
  • Burgstaller, W., Schinner, F., 1993. Leaching of metals with fungi. Journal of Biotechnology 27, 91–116.
  • Castro, I.M., Fietto, J.L.R., Vieira, R.X.J., Tropia, M.J.M., 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures, Hydrometallurgy, 57, 39-49.
  • Tzeferis, P.G., Agatzini-Leonardou, S., 1994. Leaching of nickel and iron from Greek nonsulphide nickeliferrous ores by organic acids. Hydrometallurgy 36, 35–360.
  • Avakyan, Z.A., 1994. The toxicity of heavy metals to microorganisms. Qatar University Science Journal 14, 3–65.
  • Narayana, K.L., Swamy, K.M., Panchanadikar, V.V., Kar, R.N., Sukla, L.B., 1995. Effect of ultrasonic irradiation on bioleaching of Sukinda nickel ore. Accoustics Letters 18, 227–232.
  • Sukla, L.B., Swamy, K.M., Narayana, K.L., Kar, R.N., Panchanadikar, V.V., 1995. Bioleaching of Sukinda laterite using ultrasonics. Hydrometallurgy 37, 387–391.
  • Swamy, K.M., Sukla, L.B., Narayana, K.L., Kar, R.N., Panchanadikar, V.V., 1993. Application of ultrasonics in improvement of fungal strain. Accoustics Letters 17, 43–49.
  • Swamy, K.M., Narayana, K.L., Misra, V.N., 2005. Bioleaching with ultrasound. Ultrasonics Sonochemistry 12, 301–306.
  • Pitt, W.G., Ross, S.A., 2003. Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress 19 (3), 1038– 1044.
  • Simate, G.S., Ndlovu, S., 2007. Characterisation of factors in the bacterial leaching of nickel laterites using statistical design of experiments. Advanced Materials Research 20–21, 66–69.
  • Coto, O., Galizia, F., Hernández, I., Marrero, J., Donati, E., 2008. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy 94, 18–22.
  • Simate, G.S., 2009. The bacterial leaching of nickel laterites using chemolithotrophic microorganisms. MSc (Eng) dissertation, University of the Witwatersrand, South Africa. Available http://witsetd.wits.ac.za:8080/dspace/handle/123456789/709 8. from
  • Simate, G.S., Ndlovu, S., Gericke, M., 2009b. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy 98, 241–246.
  • Ndlovu, S., Simate, G.S., Gericke, M., 2009. The microbial assisted leaching of nickel laterites using a mixed culture of chemolithotrophic microorganisms. Advanced Materials Research 71–73, 493–496.
  • Schippers, A., Sand, W., 1999. Bacterial leaching of metal sulphides proceeds by two indirect mechanism via thiosulphate or via polysulphides and sulphur. Applied and Environmental Microbiology 65, 319– 321.
  • Hanford, G.S., Vargas, T., 2001. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59, 135–145.
  • Sand, W., Gehrke, T., Jozsa, P.-G., Schippers, A., 2001. Bio(chemistry) of bacterial leaching - direct versus indirect bioleaching. Hydrometallurgy 51, 115–175.
  • Deveci, H., Akcil, A., Alp, I., 2004. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy, 73, 293-300.
  • Brierley, J.A., Brierley, C.L., 2001. Present and future biohydrometallurgy. Hydrometallurgy 59, 233–239. applications of
  • Norris, P.R. ve Parrot, L., 1986.High Temperature, Mineral Concentrate Dissolution with Sulfolobus, In: Fundamental and Applied Biohydrometallurgy, Elsevier, Amsterdam, Netherlands, 355-365.
  • Clark, M.E., Batty, J.D., van Buuren, C.B., Dew, D.W., Eamon, M.A., 2006; “Biotechnology in Minerals Processing: Technological Breakthroughs Creating Value”, Hydrometallurgy, 83, 3-9.
  • Nemati, M., Lowenadler, J., Harrison, S.T.L., 2000.Particle Size Effects in Bioleaching of Pyrite by Asidophilic Thermophile Sulfolobus metallicus (BC), Appl. Microbiol. Biotechnol., 53, 173-179.
  • Rawlings, D.E., Dew,
  • D., du Plessis, C.,
  • Biomineralization of Metal-containing Ores
  • and Concentrates, Trends in Biotechnology, 21 (1), 38-44.
  • Gomez, C., Blazquez, M. L., Ballester, A., 1999. Bioleaching of Spanish Complex Sulphide Ore Bulk Concentrate. Minerals Engineering,12,93-106.
  • Bridge, T.A.M., Johnson, D.B., 1998. Reduction of soluble iron and reductive dissolution of ferric iron- containing minerals by moderately thermophilic iron-oxidizing bacteria. Applied and Environmental Microbiology 64 (6), 2181–2186.
  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B., 2007. Microbial extraction of nickel from Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy 85, 1–8. overburden by
  • Nestor, D., Valdivia, U., Chaves, A.P., 2001. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. International Journal of Mineral Processing 62, 187–198.
  • Kodali, B., Rao, M.B., Narasu, M.L., Pogaku, R., 2004. enhancement of rate of leaching. Chemical Engineering Science, 59, 5069–5503. reactions in
  • Valix, M., Usai, F., Malik, R., 2000. Fungal bio- leachıng of low grade laterite ores, Minerals Engineering, 8, 175.
  • Ke, J., Lee, H., 2006. Bacterial leaching of nickel- bearing pyrrhotite, Hydrometallurgy, 82, 172–175.
  • Wu, C.J., Jie, G.J., Xiu, Z.Q., Sheng, X.L., Qing, G.Z., 2010. Leaching of nickel-molybdenum sulfide ore in membrane biological reactor. Hunan Biological and Electromechanical Polytechnic, 21, 1395-1401.
  • Gholami, R.M., Borghei, S.M., Mousavi, S.M., 2010. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Hydrometallurgy, 106, 26–31.
  • Wu, C.J., Jie, G.J., Xiu, Z.Q., Sheng, X.L., Qing, G.Z., 2010. Leaching of nickel-molybdenum sulfide ore in membrane biological reactor. Hunan Biological and Electromechanical Polytechnic, 21, 1395-1401.
  • Gholami, R.M., Borghei, S.M., Mousavi, S.M., 2010. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Hydrometallurgy, 106, 26–31.

Nickel recovery from lateritic ores via bioleaching

Yıl 2014, Cilt: 30 Sayı: 4, 275 - 284, 01.08.2014

Öz

Upon progress of technology, nickel has been considered as an important raw material for development of new products. Ore deposits with only 1-3% Ni content are suitable for production. About 72% of the world's nickel resources are laterites. The remaining 28% are sulphides. However, about 58% of the world’s primary nickel production comes from nickel sulphide and about 42% of mined nickel comes from nickel laterite deposits. Moreover decrease in sulphide nickel reserves makes lateritic deposits come to the forefront in nickel production. The most common technique in processing of lateritic nickel ores involves traditional mining of the ore, crushing and grinding of the ore after its removal from the ore deposit and the use of pyrometallurgical and/or hydrometallurgical techniques to extract metals from the ore. In traditional extraction of metals from ores, high temperatures (pyrometallurgy) and chemicals (hydrometallurgy) are used which have detrimental effects on environment and human health. Consequently, biological extraction methods gained significant importance due to increase in biotechnological developments and found a growing application area in the mining industry for the last 50 years. Bioleaching is a simple, economical and environmentally friendly technique in leaching of metals from low grade ores. As lateritic nickel ores possess very high amounts of iron, H2SO4 consumption in hydrometallurgical processes increases significantly. The use of bioleaching technique for the extraction of nickel from lateritic nickel ores could reduce the inferior economical effects of acid usage and make the process to be performed in a more controlled way. In this paper, recent developments and bioleaching applications in the nickel recovery from lateritic ores were investigated.

Kaynakça

  • Moskalyk, R.R., Alfantazi, A.M., 2002. Nickel laterite processing and electrowinning practice. Minerals Engineering 15, 593–605.
  • Elias, M., 2002. Nickel laterite deposits — geological overview, resources and exploitation. In: Cooke, C.R., Pontgratz, J. (Eds.), Giant Ore Deposits: Characteristics, Genesis and Exploitation. : CODES Special Publication. Centre for Ore Deposit Research, University of Tasmania,205–220.
  • Gleeson, S.A., Butt, C.R.M., Elias, M., 2003. Nickel laterites: review. Society of Economic Geologists (SEG) Newsletter, Number 54. Available from www.segweb.org.
  • Dalvi, A.D., Bacon, W.G., Osborne, R.C., 2004. The past and the future of nickel laterites. PDAC 2004 International Convention — Trade Show and Investors Exchange. Available from http://www.pdac.ca/pdac/publications/papers/2004/techprgm dalvi- bacon.pdf.
  • Watling, 2008. The bioleaching of nickel–copper sulphides.
  • Simate, G.S., Ndlovu, S., Gericke, M., 2009a. The effect of elemental sulphur and pyrite on the leaching of nickel laterites using chemolithotrophic bacteria. Hydrometallurgy Conference 2009: The Southern African Institute of Mining and Metallurgy.
  • TMMOB Türkiye Maden Mühendisleri Odası. 2012. Nikel Raporu,52.
  • Golightly, J.P., 1981. Nickeliferous laterite deposits. Economic Geology 75, 710–735.
  • Alibhai, K.A.K., Dudeney, A.W.L., Leak, D.J., Agatzini, S., Tzeferis, P., 1993. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiology Reviews 11, 87–96.
  • Ağaçayak, T., 2008; Karaçam (Eskişehir) Lateritik Nikel Cevherinin Fiziksel ve Kimyasal Yöntemlerle Zenginleştirilmesi, Doktora Tezi, Selçuk Üniversitesi Maden Mühendisliği Anabilim Dalı, Konya.
  • Burger, P.A., 1996. Origins and Characteristics of Lateritic Nickel Deposits, Nickel 96: Mineral to Markert, Aus. I. M. M. (Melbourne), pp. 179–183.
  • Valix, M., Usai, F., Malik, R., 2001a. Fungal bioleaching of low grade laterite ores. Minerals Engineering 14 (2), 197–203.
  • Brand, N.W., Butt, C.R.M., Elias, M., 1998. Nickel laterites: classification and features. AGSO Journal of Australian Geology and Geophysics 17 (4), 81– 88.
  • Camuti, K.S., Riel, R.G., 1996. Mineralogy of Murrin Murrin nickel laterites. In: Grimsey, E.J., Neuss, I. (Eds.), Proceedings Nickel 1996. The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 209–210.
  • Göveli, A., 2006. Nickel Extraction From Gördes Laterites By Hydrochloric Acid Leaching, MSc thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, s: 102, Ankara.
  • Betteridge, W., 1984. Nickel and Its Alloys, John Willey & Sons,161.
  • Sauvage Gabriel F., 2008. Overview The Future demand of Ferronickel Market, The Euronickel Conference, Moskova. G.M., 18. Mudd, 2010. Global trends and environmental issues in nickel mining Sulfides versus laterites, Ore Geology Reviews, 38, 9–26.
  • DPT Madencilik Özel İhtisas Komisyonu, 2006; Dokuzuncu Madencilik Özel İhtisas Komisyonu Raporu.. Plânı (2007-2013)
  • Acevedo, F., 2000. The use of reactors in biomining processes. Electronic Journal of Biotechnology 3 (3), 184–194.
  • Uzun, E., 2011. Karaçam Lateritik Nikel Cevherinin H2SO4, HCl ve HCl-C2H5OH-H2O Ortamlardaki Davranımı, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü , Yüksek Lisans Tezi, 87, Ankara.
  • Glazer, A.N., Nikaido, H., 2007. Microbial Biotechnology: Microbiology. Cambridge University Press, New York Canterford, J.H., 1972. The extractive metallurgy of nickel. Reviews of Pure and Applied Chemistry 22, 13–46. of Applied
  • Tzeferis, P., 1992. Mechanisms important for bioleaching microorganisms. Metalleiologika Metallourgika Chronika 2 (1), 85–107. accumulation by
  • Panda, S.C., Sukla, L.B., Rao, P.K., Jena, P.K., 1980. Extraction of nickel through reduction roasting and ammoniacal leaching of lateritic nickel ores. Transactions of the Indian Institute of Metals 33, 161–165.
  • Chander, S., Sharma, V.N., 1981. Reduction roasting/ammonia laterites. Hydrometallurgy 7, 315–327. of nickeliferous
  • Georgiou, D., Papangelakis, V.G., 1998. Sulphuric acid pressure leaching of limonitic laterite: chemistry and kinetics. Hydrometallurgy 49, 23– 46. 27. Rubisov, D.H., Papangelakis, V.G., 2000. Sulphuric acid pressure leaching of laterites — a comprehensive model of a continuous autoclave. Hydrometallurgy 58, 89–101
  • Rubisov, D.H., Krowinkel, J.M., Papangelakis, V.G., 2000. Sulphuric acid pressure leaching of laterites — universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends. Hydrometallurgy 58, 1–11.
  • Kar, B.B., Swamy, Y.V., Murthy, B.V.R., 2000. Design of experiments to study the extraction of nickel from lateritic ore by sulphatization using sulphuric acid. Hydrometallurgy 56, 387–394.
  • Lee, H.Y., Kim, S.G., Oh, J.K., 2005. Electrochemical leaching Hydrometallurgy 77, 263–268. from low grade laterites.
  • Xu, Y., Xie, Y., Yan, L., Yang, R., 2005. A new method for recovering valuable metals from low-grade nickeliferous oxide ores. Hydrometallurgy 80, 280– 285.
  • Simate, G.S., Ndlovu, S., Walubita, L.F., 2010. The fungal and chemolithotrophic leaching of nickel laterites — Challenges and opportunities, Hydrometallurgy 103 ,150–157.
  • Rubio, A. ve Garcia Frutos, F.J., 2002.Bioleaching Capacity of an Extremely Thermophilic Culture for Chalcopyritic Materials, Minerals Engineering, 15, 689- 694.
  • Sandström, A., Petersson, S., 1997. Bioleaching of a Complex Sulphide Ore with Moderate Thermophilic and Extreme Thermophilic Microorganisms, 46, 181-190. 35. Çiftçi,
  • H., 2003.Asidofilik Bakteriler Yardımıyla
  • Kalkopirit Biyoliçinde Katı Oranının Etkisi, Yüksek
  • lisans tezi, S.D.Ü. Fen Bilimleri Enstitüsü, Isparta, 121 s.
  • Hsu, C.H., Harrison, R.G., 1995. Bacterial Leaching of Zinc and Copper from Mining Wastes, 37, 169-179.
  • Akçil, A. ve Çiftçi, H., 2003. Küre Piritli Bakır Cevherinin Liçinde Sülfür ve Demir Oksidasyonu Yapan Bakterilerin Metal Kazanımına Etkisi, Yerbilimleri Dergisi, 28, 145-154.
  • Akcil, A., 2004. Potential bioleaching developments towards commercial reality: Turkish metal mining’s future, Minerals Engineering, 17, 477-480.
  • Rawlings, D.E., 2004. Microbially assisted dissolution of minerals and its use in the mining industry. Journal of Applied Chemistry 76 (4), 847–859.
  • Ndlovu, S., 2008. Biohydrometallurgy for sustainable development in the African mineral industry.
  • Tzeferis, P.G., 1994. Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites. International Journal of Mineral Processing 42, 267–283.
  • Gadd, G.M., 2001. Microbial metal transformations: minireview. The Journal of Microbiology 39 (2), 83–88.
  • Bosecker, K., 1986. Leaching of lateritic nickel ores with heterotrophic microorganisms. In: Lawrence, R.W., Branion, R.M.R., Ebner, H.G. (Eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, pp. 367–382.
  • Bosecker, K., 1989. Bioleaching of valuable metals from silicate ores and silicate waste products. In: Salley, J., McCready, Biohydrometallurgy. Proceedings. CANMET, Ottawa, pp. 15–24. International Symposium
  • Bosecker, K., 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews 20, 591– 604
  • Franz, A., Burgstaller, W., Schinner, F., 1991. Leaching
  • with P. simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Applied and Environment Microbiology 57, 769–774.
  • Coto, O., Bruguera, N., Abín, L., Gamboa, J., Gómez, Y., 2001. Bioleaching of Cuban nickeliferrous serpentinite. In: Ciminelli, V.S.T., Garcia, Fundamentals, Development, Part A. Elsevier, Amsterdam, pp. 175–182.
  • Biohydrometallurgy. : and Sustainable
  • Coto, O., Gutiérrez, D., Abín, L., Marrero, J., Bosecker, K., 2003. Influence of pH, Mg2+ and Mn2+ on the bioleaching of nickel laterite ore using the fungus Aspergillus niger O5. In: Tsezos, M., Hatzikioseyian, Biohydrometallurgy: A Sustainable Technology in Evolution. Part 1. University of Athens, Greece, pp. 124–134. Remoundaki, E. (Eds.),
  • Coto, O., Peguero, M., Abín, L., Bruguera, N., Marrero, J., Bosecker, K., 2005. Bioleaching of laterite by Aspergillus niger strain O5, an acidophilic, nickel and cobalt resistant fungus. In: Harrison, S.T.L., Rawlings, D.E., Petersen, J. (Eds.), Proceedings Biohydrometallurgy Symposium. Cape Town, South Africa, pp. 357–364. 16th International
  • Valix, M., Tang, J.Y., Cheung, W.H., 2001b. The effects of mineralogy on the biological leaching of nickel laterite ores. Minerals Engineering 14 (12), 1629–1635.
  • Valix, M., Tang, J.Y., Malik, R., 2001c. Heavy metal tolerance of fungi. Minerals Engineering 14 (5), 499–505.
  • Valix, M., Tang, J.Y., Malik, R., 2001d. The electro- sorption properties of nickel on laterite gangue leached with an organic chelating acid. Minerals Engineering 14 (2), 2005–2215.
  • Weed, S.B., Davey, C.B., Cook, M.G., 1969. Weathering of mica by fungi. Soil Science Society of America Journal 33, 702–706.
  • Berthelin, J., 1983. Microbial weathering processes. In: Krumbein, W.E. (Ed.), Microbial Geochemistry. Blackwell, Oxford, pp. 223–262.
  • McKenzie, D.I., Denys, L., Buchanan, A., 1987. The solubilisation of nickel, cobalt and iron from laterites by means of organic chelating acids at low pH. International Journal of Mineral Processing 21, 275– 292.
  • Le, L., Tang, J.A., Ryan, D., Valix, M., 2006. Bioleaching nickel laterite ores using multimetal tolerant Aspergillus foetidus organism. Minerals Engineering 19, 1259–1265.
  • Tang, J.A., Valix, M., 2006. Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Minerals Engineering 19 (12), 1274–1279.
  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B., 2006. Microbial extraction of nickel from Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85, 1–8. by niger and optimization of parameters,
  • Hallberg, K.B., Grail, B.M., du Plessis, C.A., Johnson, D.B., 2011. Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites, Minerals Engineering, 24, 620–624.
  • Yang, C., Qin, W., Lai, S., Wang, J., Zhang, Y., Jiao, F., Ren, L., Zhuang, T., Chang, Z., 2010. Bioleaching of a low grade nickel–copper–cobalt sulfide ore, Hydrometallurgy, 106, 32–37.
  • Burgstaller, W., Schinner, F., 1993. Leaching of metals with fungi. Journal of Biotechnology 27, 91–116.
  • Castro, I.M., Fietto, J.L.R., Vieira, R.X.J., Tropia, M.J.M., 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures, Hydrometallurgy, 57, 39-49.
  • Tzeferis, P.G., Agatzini-Leonardou, S., 1994. Leaching of nickel and iron from Greek nonsulphide nickeliferrous ores by organic acids. Hydrometallurgy 36, 35–360.
  • Avakyan, Z.A., 1994. The toxicity of heavy metals to microorganisms. Qatar University Science Journal 14, 3–65.
  • Narayana, K.L., Swamy, K.M., Panchanadikar, V.V., Kar, R.N., Sukla, L.B., 1995. Effect of ultrasonic irradiation on bioleaching of Sukinda nickel ore. Accoustics Letters 18, 227–232.
  • Sukla, L.B., Swamy, K.M., Narayana, K.L., Kar, R.N., Panchanadikar, V.V., 1995. Bioleaching of Sukinda laterite using ultrasonics. Hydrometallurgy 37, 387–391.
  • Swamy, K.M., Sukla, L.B., Narayana, K.L., Kar, R.N., Panchanadikar, V.V., 1993. Application of ultrasonics in improvement of fungal strain. Accoustics Letters 17, 43–49.
  • Swamy, K.M., Narayana, K.L., Misra, V.N., 2005. Bioleaching with ultrasound. Ultrasonics Sonochemistry 12, 301–306.
  • Pitt, W.G., Ross, S.A., 2003. Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress 19 (3), 1038– 1044.
  • Simate, G.S., Ndlovu, S., 2007. Characterisation of factors in the bacterial leaching of nickel laterites using statistical design of experiments. Advanced Materials Research 20–21, 66–69.
  • Coto, O., Galizia, F., Hernández, I., Marrero, J., Donati, E., 2008. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy 94, 18–22.
  • Simate, G.S., 2009. The bacterial leaching of nickel laterites using chemolithotrophic microorganisms. MSc (Eng) dissertation, University of the Witwatersrand, South Africa. Available http://witsetd.wits.ac.za:8080/dspace/handle/123456789/709 8. from
  • Simate, G.S., Ndlovu, S., Gericke, M., 2009b. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy 98, 241–246.
  • Ndlovu, S., Simate, G.S., Gericke, M., 2009. The microbial assisted leaching of nickel laterites using a mixed culture of chemolithotrophic microorganisms. Advanced Materials Research 71–73, 493–496.
  • Schippers, A., Sand, W., 1999. Bacterial leaching of metal sulphides proceeds by two indirect mechanism via thiosulphate or via polysulphides and sulphur. Applied and Environmental Microbiology 65, 319– 321.
  • Hanford, G.S., Vargas, T., 2001. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59, 135–145.
  • Sand, W., Gehrke, T., Jozsa, P.-G., Schippers, A., 2001. Bio(chemistry) of bacterial leaching - direct versus indirect bioleaching. Hydrometallurgy 51, 115–175.
  • Deveci, H., Akcil, A., Alp, I., 2004. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy, 73, 293-300.
  • Brierley, J.A., Brierley, C.L., 2001. Present and future biohydrometallurgy. Hydrometallurgy 59, 233–239. applications of
  • Norris, P.R. ve Parrot, L., 1986.High Temperature, Mineral Concentrate Dissolution with Sulfolobus, In: Fundamental and Applied Biohydrometallurgy, Elsevier, Amsterdam, Netherlands, 355-365.
  • Clark, M.E., Batty, J.D., van Buuren, C.B., Dew, D.W., Eamon, M.A., 2006; “Biotechnology in Minerals Processing: Technological Breakthroughs Creating Value”, Hydrometallurgy, 83, 3-9.
  • Nemati, M., Lowenadler, J., Harrison, S.T.L., 2000.Particle Size Effects in Bioleaching of Pyrite by Asidophilic Thermophile Sulfolobus metallicus (BC), Appl. Microbiol. Biotechnol., 53, 173-179.
  • Rawlings, D.E., Dew,
  • D., du Plessis, C.,
  • Biomineralization of Metal-containing Ores
  • and Concentrates, Trends in Biotechnology, 21 (1), 38-44.
  • Gomez, C., Blazquez, M. L., Ballester, A., 1999. Bioleaching of Spanish Complex Sulphide Ore Bulk Concentrate. Minerals Engineering,12,93-106.
  • Bridge, T.A.M., Johnson, D.B., 1998. Reduction of soluble iron and reductive dissolution of ferric iron- containing minerals by moderately thermophilic iron-oxidizing bacteria. Applied and Environmental Microbiology 64 (6), 2181–2186.
  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., Sukla, L.B., 2007. Microbial extraction of nickel from Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy 85, 1–8. overburden by
  • Nestor, D., Valdivia, U., Chaves, A.P., 2001. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. International Journal of Mineral Processing 62, 187–198.
  • Kodali, B., Rao, M.B., Narasu, M.L., Pogaku, R., 2004. enhancement of rate of leaching. Chemical Engineering Science, 59, 5069–5503. reactions in
  • Valix, M., Usai, F., Malik, R., 2000. Fungal bio- leachıng of low grade laterite ores, Minerals Engineering, 8, 175.
  • Ke, J., Lee, H., 2006. Bacterial leaching of nickel- bearing pyrrhotite, Hydrometallurgy, 82, 172–175.
  • Wu, C.J., Jie, G.J., Xiu, Z.Q., Sheng, X.L., Qing, G.Z., 2010. Leaching of nickel-molybdenum sulfide ore in membrane biological reactor. Hunan Biological and Electromechanical Polytechnic, 21, 1395-1401.
  • Gholami, R.M., Borghei, S.M., Mousavi, S.M., 2010. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Hydrometallurgy, 106, 26–31.
  • Wu, C.J., Jie, G.J., Xiu, Z.Q., Sheng, X.L., Qing, G.Z., 2010. Leaching of nickel-molybdenum sulfide ore in membrane biological reactor. Hunan Biological and Electromechanical Polytechnic, 21, 1395-1401.
  • Gholami, R.M., Borghei, S.M., Mousavi, S.M., 2010. Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, Hydrometallurgy, 106, 26–31.
Toplam 99 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA79HM86ZY
Bölüm Makaleler
Yazarlar

Hasan Çiftçi Bu kişi benim

Süleyman Atik Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 30 Sayı: 4

Kaynak Göster

APA Çiftçi, H., & Atik, S. (2014). Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 275-284.
AMA Çiftçi H, Atik S. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2014;30(4):275-284.
Chicago Çiftçi, Hasan, ve Süleyman Atik. “Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30, sy. 4 (Ağustos 2014): 275-84.
EndNote Çiftçi H, Atik S (01 Ağustos 2014) Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30 4 275–284.
IEEE H. Çiftçi ve S. Atik, “Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 30, sy. 4, ss. 275–284, 2014.
ISNAD Çiftçi, Hasan - Atik, Süleyman. “Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30/4 (Ağustos 2014), 275-284.
JAMA Çiftçi H, Atik S. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2014;30:275–284.
MLA Çiftçi, Hasan ve Süleyman Atik. “Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 30, sy. 4, 2014, ss. 275-84.
Vancouver Çiftçi H, Atik S. Lateritik Cevherlerden Nikel Kazanımında Biyoliç Yöntemi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2014;30(4):275-84.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.