BibTex RIS Kaynak Göster

Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı

Yıl 2012, Cilt: 28 Sayı: 1, 60 - 64, 01.02.2012

Öz

Bu makalede, dairesel bölgelerde yüksek mertebeden lineer kompleks diferansiyel denklemlerin çözümü için bir polinom yaklaşımı verilmektedir. Kullanılan bu sıralama yöntemi esas olarak denklemdeki bilinmeyen fonksiyon ve türev ifadelerinin kesilmiş Taylor seri temsillerinin matris gösterimlerine dayanır ki bunlar verilen bölgede tanımlanan sıralama noktalarını içerir. Yöntemin özelliklerini göstermek için karışık koşullu bazı sayısal örnekler verilmiştir.

Kaynakça

  • Cveticanin, L., Analytic approach for the solution of the complex-valued strong non-linear differential equation of Duffing type, Physica A, 297, 348-360, 2001.
  • Cveticanin, L., Free vibration of a strong non-linear system described with complex functions, J. Sound and Vibration, 277, 815-824, 2004.
  • Cveticanin, L., Approximate solution of strongly nonlinear complex differential equation, J. Sound and Vibration, 284, 503-512, 2005.
  • Barsegian, G., Gamma-Lines: On the Geometry of Real and Complex Functions, Taylor and Francis, London-New York, 2002.
  • Barsegian, G., Le, D.T., On a topological description of solutions of complex differential equations, Complex Variables, 50, 5, 307-318, 2005.
  • Ishizaki, K., Tohge, K., On the complex oscillation of some linear differential equations, J. Math. Anal. Appl., 206, 503-517, 1997.
  • Heittokangas, J., Korhonen, R., Rattya, J., Growth estimates for solutions of linear complex differential equations, Ann. Acad. Sci. Fenn. Math., 29, 233-246, 2004.
  • Andrievskii, V., Polynomial approximation of analytic functions on a finite number of continua in the complex plane, J. Approx. Theory, 133, 2, 238-244, 2005.
  • Prokhorov, V.A., On best rational approximation of analytic functions, J. Approx. Theory, 133, 284-296, 2005.
  • Akyüz, A., Sezer, M., A Chebyshev collocation method for the solution of linear integro-differential equations, Intern. J. Comput. Math., 72, 4, 491-507, 1999.
  • Akyüz, A., Sezer, M., Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients, Applied Math. and Comp., 144, 237-247, 2003.
  • Gülsu, M., Sezer, M., The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. and Comp., 168, 76-83, 2005.
  • Nas, Ş., Yalçınbaş, S., Sezer, M., A Taylor
  • polynomial approach for solving high- order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 2, 213-225, 2000.
  • Sezer, M., A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 6, 821-834, 1996.
  • Sezer, M., Akyüz-Daşcıoğlu, A., Taylor polynomial solutions of general linear differential-difference equations with variable coefficients, Applied Math. and Computation, 174, 2, 1526-1538, 2006.
  • Sezer, M., Kaynak, M., Chebyshev polynomial solutions of linear differential equations, Int. J. Math. Educ. Sci. Technol., 27, 4, 607-618, 1996.
  • Ahlfors, L.V., Complex Analysis, McGraw-Hill Inc., Tokyo, 1966.
  • Chiang, Y.M., Wang, S., Oscillation results of certain higher-order linear differential equations with periodic coefficients in the complex plane, J. Math. Anal. Appl., 215, 560-576, 1997.
  • Spiegel, M. R., Theory and Problems of Complex Variables, McGraw-Hill Inc., New York, 1972.
  • Sezer, M., Gülsu, M., Approximate solution of complex differential equations for a rectangular domain with Taylor collocation method, Applied Math. and Computation, 177, 2, 844-851, 2006.

A polynomial approximation for solutions of linear differential equations in circular domains of the complex plane

Yıl 2012, Cilt: 28 Sayı: 1, 60 - 64, 01.02.2012

Öz

In this paper we give a polynomial approach to the solution of higher order linear complex differential equations in the circular domains. The used collocation method is essentially based on the matrix representations of the truncated Taylor series of the expressions in equation and their derivatives, which consist of collocation points defined in the given domains. Some numerical examples with the mixed conditions are given to show the properties of the technique.

Kaynakça

  • Cveticanin, L., Analytic approach for the solution of the complex-valued strong non-linear differential equation of Duffing type, Physica A, 297, 348-360, 2001.
  • Cveticanin, L., Free vibration of a strong non-linear system described with complex functions, J. Sound and Vibration, 277, 815-824, 2004.
  • Cveticanin, L., Approximate solution of strongly nonlinear complex differential equation, J. Sound and Vibration, 284, 503-512, 2005.
  • Barsegian, G., Gamma-Lines: On the Geometry of Real and Complex Functions, Taylor and Francis, London-New York, 2002.
  • Barsegian, G., Le, D.T., On a topological description of solutions of complex differential equations, Complex Variables, 50, 5, 307-318, 2005.
  • Ishizaki, K., Tohge, K., On the complex oscillation of some linear differential equations, J. Math. Anal. Appl., 206, 503-517, 1997.
  • Heittokangas, J., Korhonen, R., Rattya, J., Growth estimates for solutions of linear complex differential equations, Ann. Acad. Sci. Fenn. Math., 29, 233-246, 2004.
  • Andrievskii, V., Polynomial approximation of analytic functions on a finite number of continua in the complex plane, J. Approx. Theory, 133, 2, 238-244, 2005.
  • Prokhorov, V.A., On best rational approximation of analytic functions, J. Approx. Theory, 133, 284-296, 2005.
  • Akyüz, A., Sezer, M., A Chebyshev collocation method for the solution of linear integro-differential equations, Intern. J. Comput. Math., 72, 4, 491-507, 1999.
  • Akyüz, A., Sezer, M., Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients, Applied Math. and Comp., 144, 237-247, 2003.
  • Gülsu, M., Sezer, M., The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. and Comp., 168, 76-83, 2005.
  • Nas, Ş., Yalçınbaş, S., Sezer, M., A Taylor
  • polynomial approach for solving high- order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 2, 213-225, 2000.
  • Sezer, M., A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 6, 821-834, 1996.
  • Sezer, M., Akyüz-Daşcıoğlu, A., Taylor polynomial solutions of general linear differential-difference equations with variable coefficients, Applied Math. and Computation, 174, 2, 1526-1538, 2006.
  • Sezer, M., Kaynak, M., Chebyshev polynomial solutions of linear differential equations, Int. J. Math. Educ. Sci. Technol., 27, 4, 607-618, 1996.
  • Ahlfors, L.V., Complex Analysis, McGraw-Hill Inc., Tokyo, 1966.
  • Chiang, Y.M., Wang, S., Oscillation results of certain higher-order linear differential equations with periodic coefficients in the complex plane, J. Math. Anal. Appl., 215, 560-576, 1997.
  • Spiegel, M. R., Theory and Problems of Complex Variables, McGraw-Hill Inc., New York, 1972.
  • Sezer, M., Gülsu, M., Approximate solution of complex differential equations for a rectangular domain with Taylor collocation method, Applied Math. and Computation, 177, 2, 844-851, 2006.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA79ZY38AH
Bölüm Makale
Yazarlar

Mehmet Sezer Bu kişi benim

Ayşegül Akyüz Daşcıoğlu Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 28 Sayı: 1

Kaynak Göster

APA Sezer, M., & Akyüz Daşcıoğlu, A. (2012). Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 28(1), 60-64.
AMA Sezer M, Akyüz Daşcıoğlu A. Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Şubat 2012;28(1):60-64.
Chicago Sezer, Mehmet, ve Ayşegül Akyüz Daşcıoğlu. “Kompleks düzlemin Dairesel bölgesindeki Lineer Diferansiyel Denklemlerin çözümleri için Bir Polinom yaklaşımı”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 28, sy. 1 (Şubat 2012): 60-64.
EndNote Sezer M, Akyüz Daşcıoğlu A (01 Şubat 2012) Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 28 1 60–64.
IEEE M. Sezer ve A. Akyüz Daşcıoğlu, “Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 28, sy. 1, ss. 60–64, 2012.
ISNAD Sezer, Mehmet - Akyüz Daşcıoğlu, Ayşegül. “Kompleks düzlemin Dairesel bölgesindeki Lineer Diferansiyel Denklemlerin çözümleri için Bir Polinom yaklaşımı”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 28/1 (Şubat 2012), 60-64.
JAMA Sezer M, Akyüz Daşcıoğlu A. Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2012;28:60–64.
MLA Sezer, Mehmet ve Ayşegül Akyüz Daşcıoğlu. “Kompleks düzlemin Dairesel bölgesindeki Lineer Diferansiyel Denklemlerin çözümleri için Bir Polinom yaklaşımı”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 28, sy. 1, 2012, ss. 60-64.
Vancouver Sezer M, Akyüz Daşcıoğlu A. Kompleks düzlemin dairesel bölgesindeki lineer diferansiyel denklemlerin çözümleri için bir polinom yaklaşımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2012;28(1):60-4.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.