Bilim adamları, viral veya nonviral orijinli genleri kültür bitkilerine aktararak, birçok bitkiye virüslere karşı direnç kazandırmışlardır. Tütün bitkisinde (Nicotiana tabacum L.) tütün mozaik virüsüne (TMV) karşı viral kılıf protein aracılığıyla oluşturulan direnç, tarihsel olarak bunun ilk örneği olmuştur. Diğer birçok virüs türevli DNA dizilerinin bitki virüslerine karşı direnç sağladığı da gösterilmiştir. Bu diziler arasında, translasyon yapılmayan sense veya antisense RNA, satellit RNA, eksik (defektif) müdahale eden RNA, viral replikaz, proteaz, hareket proteinleri ve nötralize edici antikorlar sayılabilir. Virüsten türetilmiş genlere ek olarak bitkisel orijinli genlerde transgenik direnç için kullanılabilir. Bu direnç mekanizmasında, genler diğer direnç genlerinde (R genleri) olduğu gibi virüse özgü olabilir. Transgen aracılı direncin avantajlarına rağmen transgenik virüs dirençli bitkilerin üretimi ve kullanımı henüz yaygın olmayıp yakın gelecekte bu teknolojinin daha da yaygınlaşacağı düşünülmektedir. Kısaca bu makalede, ekonomik olarak önemli kültür bitkilerine virüs direncini aktarmak için kullanılan rekombinant DNA teknolojisinin stratejileri ve güncel uygulamaları özetlenecektir.
Kang, B.C et al., Genetics of plant virus resistance, Annu Rev Phytopathol 43:581–621,2005.
Moreno P, et al., Plant diseases that changed the world - Citrus tristeza virus : a pathogen that changed the course of the citrus industry, Mol Plant Pathol 9, 251-268, 2008
Zaitlin, M., Viral cross-protection: more understanding is need. Phytopathology 66,382– 383,1976.
Brommonschenkel et al.,The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi, Mol Plant Microbe Interact 13,1130– 1138, 2000.
Gadani, F. et al.,Genetic engineering of plants for virus resistance, Arch Viro1 115, 1-21, 1990.
Dasgupta, et al., Genetic engineering for virus resistance, Current Science 84, 341-354, 2003.
Hamilton, R.I., Defenses triggered by previous invaders: viruses. In Plant Disease: An advanced Treatize. Vol.5, ed Horsfall, J.G. & Cowling, E.B.New York: Academic Press, pp.279-303, 1980.
Sanford, J.C. and Johnston, S.A., The concept of parasite-derived resistance from parasite's own genome, Journal of Theorotical Biology 113, 395- 405, 1985.
Palukaitis,P., & Zaitlin, M., A model to explain the "cross-protection" phenomenon shown by plant viruses and viroids. in Plant-Microbe Interction: Molecular and Genetic Perspectives, ed Kosuge, T., & Nester, E.W. pp 420-429, 1984.
Powell-Abell, P., et al., Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science 232, 738-743,1986.
Beachy, R.N., et al., Coat protein-mediated resistance against virus infection, Annual review of Phytopathology 28, 451-474, 1990.
Carr, J. P., et al., Resistance to tobacco mosaic virus induced by 54-kDa gene sequence requires expression of 54-kDa protein, Mol. Plant Microbe Interct, 397-404, 1992.
Scholthof, K.B., et al., Control of Plant virus diseases by pathogen-derived resistance in transgenic plants, Plant Physiology 101, 7- 12,1993.
Lin, S.S., et al., Strategies and mechanisms of plant virus resistance, Plant Biotechnol Rep 1,125–134, 2007.
Rodrigues, S.P, Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway, Brazilian Archives of Biology and Technology 52, 795-808, 2009.
Wilson, T.M.A, Strategies to protect crop plants against viruses: Pathogen derived blossoms, Proceedings of the National Academy of Sciences, USA 90, 3134-3141,1993.
Pang, S.Z., et al., Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot tospoviruses, BioTechnology 11, 819-824, 1993.
Lindbo, J.A., et al., Pathogen derived resistance to potyviruses: Working but Why?, Seminars in Virology 4, 369-379, 1993.
Lu, B., et al., Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection, Virology 248,188–198, 1998.
Culver, J.N., Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance, Annu Rev Phytopathol 40, 287–308, 2002.
Anderson, E., et al., Transgenic plants that express the coat protein genes of TMV,AlMV and AlMV interfere with disease development of some non related viruses, Phytopathology 79, 1284
Bazzini A.A., et al., Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively, J Gen Virol 87,1005–1012, 2006.
Baulcombe, D.C., Mechanisms of pathogen- derived resistance to viruses in transgenic plants, Plant Cell 8,1833-1844, 1996.
Prins, M., Broad virus resistance in transgenic plants, Trends Biotechnol 21,373–375, 2003.
Rudolph, C., et al.,Peptide-mediated broadspectrum plant resistance to tospoviruses, Proc Natl Acad Sci USA 100,4429–4434, 2003.
Uhrig, J.F., Response to Prins: broad virus resistance in transgenic plants, Trends Biotechnol 21, 376–377, 2003.
Lopez-Ochoa, L., et al., Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells, J Virol 80,5841–5853, 2006.
Goelet, P., et al., Nucleotide sequence of tobacco mosaic virus RNA, Proceedings of the National Academy of Sciences, U.S.A. ,79, 5818-5822,
Beachy R.N., Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation, Philos Trans R Soc Lond B Biol Sci 354, 659–664,1999.
Sanders, P. R., et al., Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82, 683-690, 1992.
Kunik, T., et al., Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12, 500-504,1994.
Hayakawa, T., et al., Genetically engineered rice resistant to rice stripe virus, an insect -transmitted virus, Proceedings of the National Academy of Sciences, USA 89, 9865-9869, 1992.
Murry, L.E., et al., Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus, Bio/Technology 3, 403-409, 1993.
Namba, S., et al., Expression of the gene encoding the coat protein of cucumber mosaic virus(CMV) strain W1 appears to provide protection to tobacco plants against infection by several different CMV strains, Gene 107, 181-188, 1991.
Gonsalves, D., et al., Comparison of coat protein- mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors, Bio/Technology 10, 1562- 1570,1992.
Reyes, C.A., et al., Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54K protein genes, Plant Cell Report 28,1817-1825, 2009.
Golemboski, D.B., et al., Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus, Proceeding of Natinonal Academy of Sciences, USA 87,6311-6315, 1990.
Anderson, J.M., et al., A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants, Proc.Natl.Acad.Sci.USA 89, 8759-8763, 1992.
Braun, C. J. & Hemenway, C.L. Expression of amino-terminal portions of full length viral replicase genes in transgenic plants confer resistance to potato virus X infection, Plant Cell 4, 735-744, 1992.
Vassilakos, N., Resistance of transgenic tobacco plants incorporating the putative 57-kDa polymerase read-through gene of Tobacco rattle virus against rub-inoculated and nematode- transmitted virus, Transgenic research 17,929-941, 2008.
MacFarlane, S.A., et al., Plants transformed with a region of 201 kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection, Proceedings of the National Academy of Sciences, USA 89, 5829-5853,1992.
Faria, J.C., Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene, Plant Science 171, 565-571, 2006.
Gal-On A., et al., Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection, Transgenic Research 14,81-93, 2005.
Longstaff, M., et al., Extreme resistance to Potato virus X infection in plants expressing a modified componenet of the putative viral replicase, EMBO Journal 12, 379-386,1993.
Rubio, T., et al., Recombination with host transgenes and effects on virus evolution: an overview and opinion, Mol Plant Microbe Interact 12, 87–92, 1999.
Chumakov, S.P., et al., Efficient downregulation of multiple mRNA targets with a single shRNA- expressing lentiviral vector, Plasmid 63, 143-149, 2010.
Lopez, C., et al., Accumulation of transgene- derived siRNAs is not sufficient for RNAi- mediated protection against Citrus tristeza virus in transgenic Mexican lime, Mol Plant Pathol 11, 33- 41,2010.
Baulcombe D.C. RNA silencing in plants, Nature 431,356–363, 2004.
Moissiard, G., Voinnet, O., RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer- like proteins, Proc Natl Acad Sci USA 103,19593– 19598, 2006.
Koundal, V. and Praveen, S., MicroRNA-based RNA Interference Vector for Gene Silencing in Plants more options, J. Plant Biochemistry and Biotechnolohy 19, 79-82, 2010.
Dalmay T, et al., An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus, Cell 101,543–553,
Xie, Z., et al, Genetic and functional diversification of small RNA pathways in plants, Plos Biol 2,642–652, 2004.
Akbergenov R, et al., Molecular characterization of geminivirus derived small RNAs in different plant species, Nucleic Acids Res 34, 462–471, 2006
Deleris A, et al., Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense, Science 313, 68–71, 2006.
Bonnet, E., et al., The small RNA world of plants, New Phytol 171, 451–468, 2006.
Niu, Q.W., et al., Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance, Nat Biotech 24,1420– 1428, 2006.
De Haan, P., et al., Characterization of RNA mediated resistance to tomato spotted Wilt virus in transgenic tobacco plants, Bio-technology 10,1133–1137,1992.
Huntley, C.C., and Hall, T.C., Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with vira1 replication, Virology 192, 290-297,1993.
Day, et al., Expression of an antisense viral gene in trangenic plants tobacco confers resistance to the DNA virus tomato golden mosaic virus, Proc.Natl Acad.Sci.USA 88,6721-6725, 1991.
Kaper, J.M. & Collmer, C.W.1988. Modulation of viral Plant diseases by secondary RNA agents. in RNA Genetics, V. III. Boca Raton:CRC Press.ed, Domingo, E., Holland,J.J & Ahlquist, P. pp 171- 194.
Yie, Y., & Tien , P. ,Plant virus satellite RNAs and their role in engineeringresistance to virus diseases, Seminars in Virology 4, 363-368, 1993.
Kollar, A., et al., Defective interfering RNA- mediated resistance against cymbidium rigspot tombusvirus in transgenic plants,Virology 193, 313-318, 1993.
Tepfer, M., Risk assessment of virus-resistant transgenic plants, Annu Rev Phytopathol 40,467– 491, 2002.
Aaziz, R., Tepfer, M., Recombination in RNA viruses and in virus-resistant transgenic plants, J Gen Virol, 80,1339–1346, 1999.
Hammond, J., et al., Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes, Adv Virus Res 54,189– 314, 1999
Gal-On A., Shiboleth, Y.M. Cross-protection, In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plant to viruses, Springer, Berlin, pp 261–288, 2006.
Schwab, R., et al., Highly specific gene silencing by artificial microRNAs in Arabidopsis, Plant Cell 18,1121–1133, 2006.
Maiti, I.B., et al., Plants that express a potyvirus proteinase gene are resistant to virus infection, Proc.Natl.Acad.Sci.USA 90,110-6114, 1993.
Lapidot, M., et al., A dyfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. The plant Journal 4, 959-970, 1993.
Sudarshana, M.R., et al., Methods for Engineering Resistance to Plant Viruses. In Methods and Protocols: Plant-pathogen Interactions (PC Ronald, Ed.) Humana Press p.183-195, 2007.
Whitham, S., et al., The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor, Cell 78, 1101– 1115,1994.
Whitham, S., et al., The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato, Proc. Natl. Acad. Sci. USA 6, 8776–
Moffett, P., et al., Interaction between domains of a plant NBS-LRR protein in disease resistance- related cell death, EMBO J. 21, 4511–4519, 2002.
Lanfermeijer, F. C., et al, Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum, Plant Mol Biol. 52, 1037–1049, 2003.
Chisholm, S.T., et al., Cloning of the Arabidopsis RTM1 gene, which controls restriction of long- distance movement of tobacco etch virus, Proc. Natl. Acad. Sci. USA 97, 489–494, 2000.
Whitham, S. A., et al., Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein, Plant Cell 12, 569–582, 2000.
Gutierrez-Campos, R., et al.,The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants, Nat. Biotechnol. 17, 1223–1226,1999.
Lodge, J. K., et al., Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein, Proc. Natl. Acad. Sci. USA 90, 7089–7093, 1993.
Tumer, N. E., et al., C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc. Natl. Acad. Sci. USA 94, 3866–3871, 1997.
Hudak, K. A., et al., Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap. RNA 8, 1148–1159, 2002.
Hong, Y., et al., Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants, Virology 220, 119–127, 1996.
Krishnan, R., et al., Expression of recombinant trichosanthin, a ribosome-inactivating protein, in transgenic tobacco, J. Biotechnol. 97, 69–88, 2002.
Tavladoraki, P., et al., Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack, Nature 366, 469–472, 1993.
Franconi, R., et al., Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses, Immunotechnology 4, 189– 201,1999.
Truve, E., et al., Transgenic potato plants epressing mammalian 2'-5' oligoadenylate synthase are protected from potato virus X infection under field conditions, Bio/Technology 11, 1048-1952, 1993.
Genetically Engineered Plants Resistant Against Plant Viruses
In Nicotiana tabacum, resistance mechanism achieved by transfering viral coat protein of tobacco mosaic virus (TMV) was the first example of this approach. Many other viral DNA sequences were determined to be effective in obtaining virus resistant plants. Among these, non-translated sense and antisense RNA, satellite RNA, defective RNA interfering, viral replicase, protease, movement proteins, and neutrelazing anticore. In addition to viral sequences or genes, non-viral plant virus resistance genes can be used to develop transgenic virus resistance plants. In this, the genes, like the other resistance genes, could be virus spesific. In spite of advantages of transgene-mediated resistance in plants, this mechanism is not widespread to date, but have potential in future applications. Briefly, in this study various recombinant DNA technologies used for increasing plant resistance to viruses and currect applications will be summarized.
Kang, B.C et al., Genetics of plant virus resistance, Annu Rev Phytopathol 43:581–621,2005.
Moreno P, et al., Plant diseases that changed the world - Citrus tristeza virus : a pathogen that changed the course of the citrus industry, Mol Plant Pathol 9, 251-268, 2008
Zaitlin, M., Viral cross-protection: more understanding is need. Phytopathology 66,382– 383,1976.
Brommonschenkel et al.,The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi, Mol Plant Microbe Interact 13,1130– 1138, 2000.
Gadani, F. et al.,Genetic engineering of plants for virus resistance, Arch Viro1 115, 1-21, 1990.
Dasgupta, et al., Genetic engineering for virus resistance, Current Science 84, 341-354, 2003.
Hamilton, R.I., Defenses triggered by previous invaders: viruses. In Plant Disease: An advanced Treatize. Vol.5, ed Horsfall, J.G. & Cowling, E.B.New York: Academic Press, pp.279-303, 1980.
Sanford, J.C. and Johnston, S.A., The concept of parasite-derived resistance from parasite's own genome, Journal of Theorotical Biology 113, 395- 405, 1985.
Palukaitis,P., & Zaitlin, M., A model to explain the "cross-protection" phenomenon shown by plant viruses and viroids. in Plant-Microbe Interction: Molecular and Genetic Perspectives, ed Kosuge, T., & Nester, E.W. pp 420-429, 1984.
Powell-Abell, P., et al., Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science 232, 738-743,1986.
Beachy, R.N., et al., Coat protein-mediated resistance against virus infection, Annual review of Phytopathology 28, 451-474, 1990.
Carr, J. P., et al., Resistance to tobacco mosaic virus induced by 54-kDa gene sequence requires expression of 54-kDa protein, Mol. Plant Microbe Interct, 397-404, 1992.
Scholthof, K.B., et al., Control of Plant virus diseases by pathogen-derived resistance in transgenic plants, Plant Physiology 101, 7- 12,1993.
Lin, S.S., et al., Strategies and mechanisms of plant virus resistance, Plant Biotechnol Rep 1,125–134, 2007.
Rodrigues, S.P, Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway, Brazilian Archives of Biology and Technology 52, 795-808, 2009.
Wilson, T.M.A, Strategies to protect crop plants against viruses: Pathogen derived blossoms, Proceedings of the National Academy of Sciences, USA 90, 3134-3141,1993.
Pang, S.Z., et al., Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot tospoviruses, BioTechnology 11, 819-824, 1993.
Lindbo, J.A., et al., Pathogen derived resistance to potyviruses: Working but Why?, Seminars in Virology 4, 369-379, 1993.
Lu, B., et al., Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection, Virology 248,188–198, 1998.
Culver, J.N., Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance, Annu Rev Phytopathol 40, 287–308, 2002.
Anderson, E., et al., Transgenic plants that express the coat protein genes of TMV,AlMV and AlMV interfere with disease development of some non related viruses, Phytopathology 79, 1284
Bazzini A.A., et al., Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively, J Gen Virol 87,1005–1012, 2006.
Baulcombe, D.C., Mechanisms of pathogen- derived resistance to viruses in transgenic plants, Plant Cell 8,1833-1844, 1996.
Prins, M., Broad virus resistance in transgenic plants, Trends Biotechnol 21,373–375, 2003.
Rudolph, C., et al.,Peptide-mediated broadspectrum plant resistance to tospoviruses, Proc Natl Acad Sci USA 100,4429–4434, 2003.
Uhrig, J.F., Response to Prins: broad virus resistance in transgenic plants, Trends Biotechnol 21, 376–377, 2003.
Lopez-Ochoa, L., et al., Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells, J Virol 80,5841–5853, 2006.
Goelet, P., et al., Nucleotide sequence of tobacco mosaic virus RNA, Proceedings of the National Academy of Sciences, U.S.A. ,79, 5818-5822,
Beachy R.N., Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation, Philos Trans R Soc Lond B Biol Sci 354, 659–664,1999.
Sanders, P. R., et al., Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82, 683-690, 1992.
Kunik, T., et al., Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12, 500-504,1994.
Hayakawa, T., et al., Genetically engineered rice resistant to rice stripe virus, an insect -transmitted virus, Proceedings of the National Academy of Sciences, USA 89, 9865-9869, 1992.
Murry, L.E., et al., Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus, Bio/Technology 3, 403-409, 1993.
Namba, S., et al., Expression of the gene encoding the coat protein of cucumber mosaic virus(CMV) strain W1 appears to provide protection to tobacco plants against infection by several different CMV strains, Gene 107, 181-188, 1991.
Gonsalves, D., et al., Comparison of coat protein- mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors, Bio/Technology 10, 1562- 1570,1992.
Reyes, C.A., et al., Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54K protein genes, Plant Cell Report 28,1817-1825, 2009.
Golemboski, D.B., et al., Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus, Proceeding of Natinonal Academy of Sciences, USA 87,6311-6315, 1990.
Anderson, J.M., et al., A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants, Proc.Natl.Acad.Sci.USA 89, 8759-8763, 1992.
Braun, C. J. & Hemenway, C.L. Expression of amino-terminal portions of full length viral replicase genes in transgenic plants confer resistance to potato virus X infection, Plant Cell 4, 735-744, 1992.
Vassilakos, N., Resistance of transgenic tobacco plants incorporating the putative 57-kDa polymerase read-through gene of Tobacco rattle virus against rub-inoculated and nematode- transmitted virus, Transgenic research 17,929-941, 2008.
MacFarlane, S.A., et al., Plants transformed with a region of 201 kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection, Proceedings of the National Academy of Sciences, USA 89, 5829-5853,1992.
Faria, J.C., Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene, Plant Science 171, 565-571, 2006.
Gal-On A., et al., Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection, Transgenic Research 14,81-93, 2005.
Longstaff, M., et al., Extreme resistance to Potato virus X infection in plants expressing a modified componenet of the putative viral replicase, EMBO Journal 12, 379-386,1993.
Rubio, T., et al., Recombination with host transgenes and effects on virus evolution: an overview and opinion, Mol Plant Microbe Interact 12, 87–92, 1999.
Chumakov, S.P., et al., Efficient downregulation of multiple mRNA targets with a single shRNA- expressing lentiviral vector, Plasmid 63, 143-149, 2010.
Lopez, C., et al., Accumulation of transgene- derived siRNAs is not sufficient for RNAi- mediated protection against Citrus tristeza virus in transgenic Mexican lime, Mol Plant Pathol 11, 33- 41,2010.
Baulcombe D.C. RNA silencing in plants, Nature 431,356–363, 2004.
Moissiard, G., Voinnet, O., RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer- like proteins, Proc Natl Acad Sci USA 103,19593– 19598, 2006.
Koundal, V. and Praveen, S., MicroRNA-based RNA Interference Vector for Gene Silencing in Plants more options, J. Plant Biochemistry and Biotechnolohy 19, 79-82, 2010.
Dalmay T, et al., An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus, Cell 101,543–553,
Xie, Z., et al, Genetic and functional diversification of small RNA pathways in plants, Plos Biol 2,642–652, 2004.
Akbergenov R, et al., Molecular characterization of geminivirus derived small RNAs in different plant species, Nucleic Acids Res 34, 462–471, 2006
Deleris A, et al., Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense, Science 313, 68–71, 2006.
Bonnet, E., et al., The small RNA world of plants, New Phytol 171, 451–468, 2006.
Niu, Q.W., et al., Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance, Nat Biotech 24,1420– 1428, 2006.
De Haan, P., et al., Characterization of RNA mediated resistance to tomato spotted Wilt virus in transgenic tobacco plants, Bio-technology 10,1133–1137,1992.
Huntley, C.C., and Hall, T.C., Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with vira1 replication, Virology 192, 290-297,1993.
Day, et al., Expression of an antisense viral gene in trangenic plants tobacco confers resistance to the DNA virus tomato golden mosaic virus, Proc.Natl Acad.Sci.USA 88,6721-6725, 1991.
Kaper, J.M. & Collmer, C.W.1988. Modulation of viral Plant diseases by secondary RNA agents. in RNA Genetics, V. III. Boca Raton:CRC Press.ed, Domingo, E., Holland,J.J & Ahlquist, P. pp 171- 194.
Yie, Y., & Tien , P. ,Plant virus satellite RNAs and their role in engineeringresistance to virus diseases, Seminars in Virology 4, 363-368, 1993.
Kollar, A., et al., Defective interfering RNA- mediated resistance against cymbidium rigspot tombusvirus in transgenic plants,Virology 193, 313-318, 1993.
Tepfer, M., Risk assessment of virus-resistant transgenic plants, Annu Rev Phytopathol 40,467– 491, 2002.
Aaziz, R., Tepfer, M., Recombination in RNA viruses and in virus-resistant transgenic plants, J Gen Virol, 80,1339–1346, 1999.
Hammond, J., et al., Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes, Adv Virus Res 54,189– 314, 1999
Gal-On A., Shiboleth, Y.M. Cross-protection, In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plant to viruses, Springer, Berlin, pp 261–288, 2006.
Schwab, R., et al., Highly specific gene silencing by artificial microRNAs in Arabidopsis, Plant Cell 18,1121–1133, 2006.
Maiti, I.B., et al., Plants that express a potyvirus proteinase gene are resistant to virus infection, Proc.Natl.Acad.Sci.USA 90,110-6114, 1993.
Lapidot, M., et al., A dyfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. The plant Journal 4, 959-970, 1993.
Sudarshana, M.R., et al., Methods for Engineering Resistance to Plant Viruses. In Methods and Protocols: Plant-pathogen Interactions (PC Ronald, Ed.) Humana Press p.183-195, 2007.
Whitham, S., et al., The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor, Cell 78, 1101– 1115,1994.
Whitham, S., et al., The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato, Proc. Natl. Acad. Sci. USA 6, 8776–
Moffett, P., et al., Interaction between domains of a plant NBS-LRR protein in disease resistance- related cell death, EMBO J. 21, 4511–4519, 2002.
Lanfermeijer, F. C., et al, Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum, Plant Mol Biol. 52, 1037–1049, 2003.
Chisholm, S.T., et al., Cloning of the Arabidopsis RTM1 gene, which controls restriction of long- distance movement of tobacco etch virus, Proc. Natl. Acad. Sci. USA 97, 489–494, 2000.
Whitham, S. A., et al., Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein, Plant Cell 12, 569–582, 2000.
Gutierrez-Campos, R., et al.,The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants, Nat. Biotechnol. 17, 1223–1226,1999.
Lodge, J. K., et al., Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein, Proc. Natl. Acad. Sci. USA 90, 7089–7093, 1993.
Tumer, N. E., et al., C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc. Natl. Acad. Sci. USA 94, 3866–3871, 1997.
Hudak, K. A., et al., Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap. RNA 8, 1148–1159, 2002.
Hong, Y., et al., Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants, Virology 220, 119–127, 1996.
Krishnan, R., et al., Expression of recombinant trichosanthin, a ribosome-inactivating protein, in transgenic tobacco, J. Biotechnol. 97, 69–88, 2002.
Tavladoraki, P., et al., Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack, Nature 366, 469–472, 1993.
Franconi, R., et al., Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses, Immunotechnology 4, 189– 201,1999.
Truve, E., et al., Transgenic potato plants epressing mammalian 2'-5' oligoadenylate synthase are protected from potato virus X infection under field conditions, Bio/Technology 11, 1048-1952, 1993.
Akbulut, M., & Gülşen, O. (2010). Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 26(4), 328-339.
AMA
Akbulut M, Gülşen O. Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2010;26(4):328-339.
Chicago
Akbulut, Mikail, ve Osman Gülşen. “Genetik mühendisliği yöntemleri kullanılarak virüse dirençli Bitkilerin Elde Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26, sy. 4 (Ağustos 2010): 328-39.
EndNote
Akbulut M, Gülşen O (01 Ağustos 2010) Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26 4 328–339.
IEEE
M. Akbulut ve O. Gülşen, “Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 26, sy. 4, ss. 328–339, 2010.
ISNAD
Akbulut, Mikail - Gülşen, Osman. “Genetik mühendisliği yöntemleri kullanılarak virüse dirençli Bitkilerin Elde Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26/4 (Ağustos 2010), 328-339.
JAMA
Akbulut M, Gülşen O. Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010;26:328–339.
MLA
Akbulut, Mikail ve Osman Gülşen. “Genetik mühendisliği yöntemleri kullanılarak virüse dirençli Bitkilerin Elde Edilmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 26, sy. 4, 2010, ss. 328-39.
Vancouver
Akbulut M, Gülşen O. Genetik mühendisliği yöntemleri kullanılarak virüse dirençli bitkilerin elde edilmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010;26(4):328-39.
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir. ✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir. ✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir. ✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir. ✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır. ✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.