BibTex RIS Kaynak Göster

Chebyshev polynomial approximation for solving the second kind linear fredholm

Yıl 2010, Cilt: 26 Sayı: 3, 203 - 216, 01.06.2010

Öz

The purpose of this study is to give a Chebyshev polynomial approximation for the solution of the second kind of Linear Fredholm integral equation. For this purpose, a new Chebyshev matrix method is introduced. This method is based on taking the truncated Chebyshev expansion of the function in the integral equations. Hence, the result matrix equation can be solved and the unknown Chebyshev coefficients can be found approximately. In addition, examples that illustrate the pertinent features of the method are presented, and the results of study are discussed.

Kaynakça

  • B. Alpert, G. Beylkin, R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Comput. 14,159-184,1993.
  • B.C. Choi, S.W. Churchill, A technique for obtaining approximate solutions for a class of integral equations arising in radiative heat transfer, Internat J. Heat Fluid Flow 6 (1),42- 48,1985.
  • L. Reichel, Parallel iterative methods for the solution of Fredholm integral equations of the second kind, in M.T.Heath, Hypercube Multiprocessors, SIAM, Philadelphia, 520- 529,1987.
  • K. Maleknejad, M. Karami, Using the WPG method for solving integral equations of the second kind, Appl. Math. Comput., 166(1),123- 130,2005.
  • E. Babolian, J. Biazar, A.R. Vahidi, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Comput. 148, 443–452,2004.
  • K. Maleknejad, Y. Mahmoudi, Numerical solution of linear Fredholm integral equations by using hybrid Taylor and Block-Pulse functions, Appl. Math. Comput. 149, 799– 806,2004.
  • K. Maleknejad, M. Karami, Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method, Appl. Math. Comput.,168(1),102- 110,2005.
  • W. Chen, Z. Lu, An algorithm for Adomian decomposition method, Appl. Math. Comput.159,221–235,2004.
  • Akyüz A., Sezer M., ‘A Chebyshev collocation method for the solution of linear integro- differential equations’,Int.J.Compt.Math.72 (4),491-507,1999.
  • Akyüz, A. and Sezer, M., Chebyshev polynomial solutions of systems of high- orderlinear differential equations with variable coefficients, Appl. Math. Comput.144, 237-247, 2003.
  • Akyüz, A. ‘A Chebyshev polynomial approach for linear Fredholm–Volterra integro- differential equations in the most general form’, Appl. Math. Comput., 181, (1),103-112, 2006.
  • M. Sezer, M. Kaynak, Chebyshev polynomial solutions of linear differential equations, Int. J. Math. Educ. Sci. Technol. 27 (4),607–618,1996.
  • M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Intern. J. Comput. Math. 82 (5),629-642,2005.
  • M. Gulsu and M. Sezer, Polynomial solution of the most general linear Fredholm integrodifferential-difference equations by means of Taylor matrix method, Complex Variables,50(5),367-382,2005.
  • M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Intern. J. Comput. Math. 82 (5),629-642,2005.
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press,Cambridge, 1997.
  • L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge,1985.
  • M.A.Synder, Chebyshev methods in Numerical Approximation, Prentice Hall, Inc., London,1966.
  • X.Shang, D.Han,Numerical solution of Fredholm integral equations of the first kind by using Legendre multi-wavelets, Appl. Math. Comput., 191,440-444, 2007.
  • K.Malekneyad, S.Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets, Appl. Math. Comput., 186,836-843, 2007.

İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları

Yıl 2010, Cilt: 26 Sayı: 3, 203 - 216, 01.06.2010

Öz

Bu çalışmada ikinci tip linear Fredholm integral denklemlerinin Chebyshev polinomları ile çözümlerinin bulunması amaçlanmıştır. Bu amaçla yeni Chebyshev matris yöntemi geliştirilmiştir. Belirtilen yöntem denklemdeki bilinmeyen fonksiyonlarının kesilmiş Chebyshev polinomlarının matris formlarının alınması esasına dayanır. Böylece elde edilen denklem sistemi çözülerek Chebyshev polinomlarının katsayıları bulunur. Yöntemin hassasiyeti çeşitli örneklerle açıklanmış ve sonuçlar tartışılmıştır.

Kaynakça

  • B. Alpert, G. Beylkin, R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Comput. 14,159-184,1993.
  • B.C. Choi, S.W. Churchill, A technique for obtaining approximate solutions for a class of integral equations arising in radiative heat transfer, Internat J. Heat Fluid Flow 6 (1),42- 48,1985.
  • L. Reichel, Parallel iterative methods for the solution of Fredholm integral equations of the second kind, in M.T.Heath, Hypercube Multiprocessors, SIAM, Philadelphia, 520- 529,1987.
  • K. Maleknejad, M. Karami, Using the WPG method for solving integral equations of the second kind, Appl. Math. Comput., 166(1),123- 130,2005.
  • E. Babolian, J. Biazar, A.R. Vahidi, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Comput. 148, 443–452,2004.
  • K. Maleknejad, Y. Mahmoudi, Numerical solution of linear Fredholm integral equations by using hybrid Taylor and Block-Pulse functions, Appl. Math. Comput. 149, 799– 806,2004.
  • K. Maleknejad, M. Karami, Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov–Galerkin method, Appl. Math. Comput.,168(1),102- 110,2005.
  • W. Chen, Z. Lu, An algorithm for Adomian decomposition method, Appl. Math. Comput.159,221–235,2004.
  • Akyüz A., Sezer M., ‘A Chebyshev collocation method for the solution of linear integro- differential equations’,Int.J.Compt.Math.72 (4),491-507,1999.
  • Akyüz, A. and Sezer, M., Chebyshev polynomial solutions of systems of high- orderlinear differential equations with variable coefficients, Appl. Math. Comput.144, 237-247, 2003.
  • Akyüz, A. ‘A Chebyshev polynomial approach for linear Fredholm–Volterra integro- differential equations in the most general form’, Appl. Math. Comput., 181, (1),103-112, 2006.
  • M. Sezer, M. Kaynak, Chebyshev polynomial solutions of linear differential equations, Int. J. Math. Educ. Sci. Technol. 27 (4),607–618,1996.
  • M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Intern. J. Comput. Math. 82 (5),629-642,2005.
  • M. Gulsu and M. Sezer, Polynomial solution of the most general linear Fredholm integrodifferential-difference equations by means of Taylor matrix method, Complex Variables,50(5),367-382,2005.
  • M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Intern. J. Comput. Math. 82 (5),629-642,2005.
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press,Cambridge, 1997.
  • L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge,1985.
  • M.A.Synder, Chebyshev methods in Numerical Approximation, Prentice Hall, Inc., London,1966.
  • X.Shang, D.Han,Numerical solution of Fredholm integral equations of the first kind by using Legendre multi-wavelets, Appl. Math. Comput., 191,440-444, 2007.
  • K.Malekneyad, S.Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets, Appl. Math. Comput., 186,836-843, 2007.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA82CS88CT
Bölüm Makale
Yazarlar

Mustafa Gülsu Bu kişi benim

Yalçın Öztürk Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 26 Sayı: 3

Kaynak Göster

APA Gülsu, M., & Öztürk, Y. (2010). İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 26(3), 203-216.
AMA Gülsu M, Öztürk Y. İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Haziran 2010;26(3):203-216.
Chicago Gülsu, Mustafa, ve Yalçın Öztürk. “İkinci Tip Lineer Fredholm Integral Denklemlerinin Chebyshev Polinom yaklaşımları”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26, sy. 3 (Haziran 2010): 203-16.
EndNote Gülsu M, Öztürk Y (01 Haziran 2010) İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26 3 203–216.
IEEE M. Gülsu ve Y. Öztürk, “İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 26, sy. 3, ss. 203–216, 2010.
ISNAD Gülsu, Mustafa - Öztürk, Yalçın. “İkinci Tip Lineer Fredholm Integral Denklemlerinin Chebyshev Polinom yaklaşımları”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26/3 (Haziran 2010), 203-216.
JAMA Gülsu M, Öztürk Y. İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010;26:203–216.
MLA Gülsu, Mustafa ve Yalçın Öztürk. “İkinci Tip Lineer Fredholm Integral Denklemlerinin Chebyshev Polinom yaklaşımları”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 26, sy. 3, 2010, ss. 203-16.
Vancouver Gülsu M, Öztürk Y. İkinci tip lineer fredholm integral denklemlerinin chebyshev polinom yaklaşımları. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010;26(3):203-16.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.