BibTex RIS Kaynak Göster

BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ

Yıl 2007, Cilt: 23 Sayı: 1, 47 - 60, 01.02.2007

Öz

Stres, olumsuz çevresel faktörlerin üstesinden gelebilmek için bitkinin mücadelesini kapsayan stres toleransı ile yakından ilişkilidir. Yüksek sıcaklık stresi, bitki büyüme ve verimliliğini olumsuz etkileyen bir seri fizyolojik ve biyokimyasal değişikliklere neden olmaktadır. Yüksek sıcaklık koşullarında, birçok organizmanın hayatta kalma ve iyileşme yeteneği “kalıtsal termal tolerans” ve “kazanılan termal tolerans” tarafından belirlenmektedir. Bitki çeşitleri yüksek sıcaklıklara karşı farklı düzeyde tolerans kazanabilirler. Bitki genotiplerinin yüksek sıcaklığa cevap mekanizmaları ve yüksek sıcaklık toleransında bu mekanizmaların rollerinin belirlenmesi önemlidir. Türler ya da çeşitler arasında yüksek sıcaklık toleransı açısından genotipik çeşitliliğin belirlenmesinde, fotosentetik pigment (klorofil a+b ve karotenoidler) birikimi testi ile tetrazolium tuzlarının canlı hücreler tarafından indirgenmesine bağlı hücre canlılığı testi gibi spektrofotometrik-temelli testler kullanılmaktadır.

Kaynakça

  • Wang, W.X, et al., Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance, Planta, 218, 1-14, 2003.
  • Bray, E.A., et al., Responses to Abiotic Stresses, In: Buchanan, B., Gruissem, W., Jones, R. (Eds.), Biochemistry and Molecular Biology of Plants, pp.1158-1203, Rockville, MD: ASPB, 2000.
  • Wang, W.X, et al., Biotechnology of Plant Osmotic Stress Tolerance: Physiological and Molecular Considerations, Acta Hort., 560, 285-292, 2001.
  • Paulsen, G.M., High Temperature Responses of Crop Plants, In: Boote et al. (Eds.), Physiology and Determination of Crop Yield, pp.365-389, ASA, CSSA, and SSSA, Madison, 1994.
  • Ishag, H.M., Mohamed, A.B., Phasic Development of Spring Wheat and Stability of Yield and Its Components in Hot Environments, Field Crops Res., 46, 169-176, 1996.
  • Setimela, P.S., et al., Screening Sorghum Seedlings for Heat Tolerance using a Laboratory Method, Eur. J. Agron., 23, 103-107, 2005.
  • Reynolds, M.P., et al., Evaluating Physiological Traits to Complement Empirical Selection for Wheat in Warm Environments, Euphytica, 100, 84-95, 1998.
  • Batts, G.R., et al., Yield and Partitioning in Crops of Contrasting Cultivars of Winter Wheat in Response to CO2 and Temperature in Field Studies using Temperature Gradient Tunnels, J. Agric. Sci., Cambridge, 130, 27, 1998.
  • Akkaya, A., Buğday Yetiştiriciliği, s. 225, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, 1994.
  • Fokar, M., et al., Heat Tolerance in Spring Wheat. I. Genetic Variability and Heritability of Cellular Thermotolerance, Euphytica, 104, 1-8, 1998.
  • Ibrahim, A.M.H., Quick, J.S., Heritability of Heat Tolerance in Winter and Spring Wheat, Crop Sci., 41, 1405, 2001a.
  • Saadalla, M.M., et al., Heat Tolerance in Winter Wheat: I. Hardening and Genetic Effects on Membrane Thermostability, Crop Sci., 30, 1243-1247, 1990.
  • Ibrahim, A.M.H., Quick, J.S., Genetic Control of High Temperature Tolerance in Wheat as Measured Membrane Thermal Stability, Crop Sci., 41, 1405-1407, 2001b.
  • Burke, J.J., Characterization of Acquired Thermotolerance in Soybean Seedlings, Plant Physiol. Biochem., , 601-607, 1998.
  • Karim, M.A., et al., Photosynthetic Activity of Developing Leaves of Zea mays is Less Affected by Heat Stress than that of Developed Leaves, Physiol. Plant., 105, 685-693, 1999.
  • Dash, S., Mohanty, N., Evaluation of Assay for the Analysis of Thermotolerance and Recovery Potentials of Seedlings of Wheat (Triticum aestivum L.) Cultivars, J. Plant Physiol., 158, 1153-1165, 2001.
  • Levitt, J., Responses of Plants to Environmental Stress, I. Chilling, Freezing and High Temperature Stresses, pp.607, Academic Press, Inc., 2nd Edition, 1980.
  • Jones, R.A., Qualset, C.O., Breeding Crops for Environmental Stress Tolerance, In: Collins, G.B., Petolino, J.G. (Eds.), Application of Genetic Engineering to Crop Improvement, pp.305-340, Dordrecht, Netherlands, Nijhoff/Junk, 1984.
  • Taiz, L., Zeiger, E., Plant Physiology, 3th Edition, pp.602-611, Sinauer Associates, Inc., 2002. http://7.tamu-commerce.edu/agscience/clasnote/pls381/8.s
  • Houghton, J.T., et al., (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), 944 pp.,
  • Cambridge University Press, UK, 2001.
  • Marcum, K.B., Cell Membrane Thermostability and Whole-Plant Heat Tolerance of Kentucky Bluegrass, Crop Sci., 38, 1214-1218, 1998.
  • Abernethy, R.H., et al., Thermotolerance is Developmentally Dependent in Germinating Wheat Seed, Plant Physiol., 89, 569-576, 1989.
  • Huang, B., et al., Shoot Physiological Responses of Two Bentgrass Cultivars to High Temperature and Poor Soil Aeration, Crop Sci., 38, 1219-1225, 1998.
  • Larkindale, J., Huang, B., Changes of Lipid Composition and Saturation Level in Leaves and Roots for Heat-stressed and Heat-acclimated Creeping Bentgrass (Agrostis stolonifera), Environ. Exp. Bot., 51, 57-67, Stone, P., The Effects of Heat Stress on Cereal Yield and Quality, In: Basra, A.S. (Ed.), Crop Responses and Adaptations to Temperature Stress, pp. 243-291, Food Products Press, Binghamton, NY, 2001.
  • Gusta, L.V., Chen. T.H.H., The Physiology of Water and Temperature Stress, In: Heyne, E.G. (Ed.), Wheat and Wheat Improvement (2nd ed.), pp.115-149, ASA, CSSA, and SSSA, Madison, WI, 1987.
  • Burke, J.J., High Temperature Stress and Adaptation in Crops, In: Alscher, R.G., Cummings, J.R. (Eds.), Stress Response in Plants: Adaptation and Acclimation Mechanisms, pp.295-309, WileyLiss, New York, Burke, J.J., et al., Crop-Specific Thermal Kinetic Windows in Relation to Wheat and Cotton Biomass Production, Agron. J., 80, 553-556, 1988.
  • Nguyen.,H.T., Joshi, P.C., Molecular Strategies for The Genetic Dissection of Water and High Temperature Stress Adaptation in Cereal Crops, Proceedings of an International Symposium on the Adaptation of Food Crops to Temperature and Water Stress, , Taiwan, 119, 13-18 August, 1992.
  • Burke, J.J., et al., Isolation of Arabidopsis Mutants Lacking Components of Acquired Thermotolerance, Plant Physiol., 123, 575-587, 2000.
  • Vierling, E., The Roles of Heat Shock Proteins in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 620, 1991.
  • Hatice, G., Atilla, E., Some Physiological Changes in Strawberry (Fragaria × ananassa ‘Camarosa’) Plants Under Heat Stress, J. Hort. Sci. Biotech., 78, 894-898, 2003.
  • Sangwan, V., et al., Opposite Changes in Membrane Fluidity Mimic Cold and Heat Stress Activation of Distinct Plant MAP Kinase Pathways, Plant J., 31, 629-638, 2002.
  • Maestri, E., et al., Molecular Genetics of Heat Tolerance and Heat Shock Proteins in Cereals, Plant Mol. Biol., 48, 667-681, 2002.
  • Schlesinger, M.J., et al., Heat Shock from Bacteria to Man, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 1982.
  • Blum, A., Plant Breeding for Stress Environments, 223 pp., CRC Press, Inc., Boca Raton, Florida, 1988.
  • Suss, K.H., Yordanov, I.T, Biosynthetic Causes of In Vivo Acquired Thermotolerance of Photosynthetic Light Reactions and Metabolic Responses of Chloroplast to Heat Stress, Plant Physiol., 81, 192-199, 1986.
  • Lin CY., et al., Solute Leakage in Soybean Seedlings under Various Heat Shock Regimes, Plant Cell Physiol., 26, 1493-1498, 1985.
  • Raison J.K., et al., Membrane Properties in Relation to The Adaptation of Plants to High and Low Temperature Stress, In: Turner, N.C., Kramer, P.J. (Eds.), Adaptation of Plants to Water and High Temperature Stress, pp.261-273, Wiley, New York, USA, 1980.
  • Weigel, H.J., The Effect of High Temperatures on Leaf Cells of Valerianella: Relative Heat Stability of the Tonoplast Membrane of Mesophyll Vacuoles, Planta, 159, 398-403, 1983.
  • Santarius, K.A., et al., Effects of High Temperature on the Photosynthetic Apparatus in Isolated Mesophyll Protoplasts of Valerianella locusta (L.) Betcke, Photosynthetica, 25, 17-26, 1991.
  • Vigh, L., et al., The Primary Signal in the Biological Perception of Temperature: Pd-catalyzed Hydrogenation of Membrane Lipids Stimulated the Expression of the desA Gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA, 90, 9090-9094, 1993.
  • Horvath, I., et al., Membrane Physical State Controls the Signaling Mechanism of the Heat Shock Response in Synechocystis PCC 6803: Identification of hsp17 as a Fluidity Gene, Proc. Natl. Acad. Sci. USA, 95, 3513- 3518, 1998.
  • Whitaker, B.D., et al., Influence of Pre-storage Heat and Calcium Pre-treatments on Lipid Metabolism in Golden Delicious Apples, Phytochemistry, 45, 465-472, 1997.
  • Grover, A., et al., Production of High Temperature Tolerant Transgenic Plants through Manipulation of Membrane Lipids, Curr. Sci., 79, 557-559, 2000.
  • Klueva, N.Y., et al., Mechanisms of Thermotolerance in Crops, In: Basra, A.S. (Ed.), Crop Responses and Adaptations to Temperature Stress, pp.177-217, Food Products Press, Binghamton, NY, 2001.
  • Santarius, K.S., Muller, M., Investigations on Heat Resistance on Spinach Leaves, Planta, 146, 529-538, McCourt, P., et al., The Effects of Reduced Amounts of Lipid Unsaturation on Chloroplast Ultrastructure and Photosynthesis in a Mutant of Arabidopsis, Plant Physiol., 84, 353-360, 1987.
  • Kunst, L., et al., Enhanced Thermal Tolerance in a Mutant of Arabidopsis Deficient in Palmitic Acid Unsaturation, Plant Physiol., 91, 401-408, 1989a.
  • Kunst, L., et al., A Mutant of Arabidopsis Deficient in Desaturation of Palmitic Acid in Leaf Lipids, Plant Physiol., 90, 943-947, 1989b.
  • Behl, R.K., et al., High Temperature Tolerance in Relation to Changes in Lipids in Mutant Wheat, Tropenlandwirt, 97, 131-135, 1996.
  • Yang, J.F., et al., Influence of High Temperature and Low Humidity on the Fatty Acid Composition of Membrane Lipids in Wheat, Acta Bot. Sin., 26, 386-391, 1984.
  • Diepenbrock, W., et al., FA Composition of Root Membrane Lipids from 2 Potatoes (S. tuberosum L.) Genotypes Differing in Heat Tolerance as Affected by Supraoptimal Rootzone Temperature, Agrochimica, , 478-486, 1989.
  • Francisco, J.P., et al., Ascorbic Acid and Flavonoidperoxidase Reaction as a Detoxifying System of H2O2 in Grapevine Leaves, Phytochemistry, 60, 573-580, 2002.
  • Diego, A.M., et al., Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress, Environ. Exp. Bot., 49, 69-76, 2003.
  • Desikan, R., et al., Generation of Active Oxygen in Elicited Cells of Arabidopsis thaliana is Mediated by a NADPH Oxidaselike Enzyme, FEBS Lett., 382, 213-217, 1996.
  • Shewfelt, R.L., Purvis, A.C., Toward a Compherensive Model for Lipid Peroxidation in Plant Tissue Disorders, Hort. Sci., 30, 213-218, 1995.
  • Foyer, C.H., et al., Protection Against Oxygen Radicals: An Important Defense Mechanism Studied in Transgenic Plants, Plant Cell Environ., 17, 507-523, 1994.
  • Sullivan, C.Y., Mechanisms of Heat and Drought Resistance in Grain Sorghum and Methods of Measurement, In: Rao, N.G.P., House, L.R. (Eds.), Sorghum in the Seventies, Oxford and IPH Publishing Co., New Delhi, India, 1972.
  • Shanahan, J.F., et al., Membrane Thermostability and Heat Tolerance of Spring Wheat. Crop Sci., 30, 251, 1990.
  • Ismail, A.M., Hall, A.E., Reproductive-stage Heat Tolerance, Leaf Membrane Thermostability and Plant Morphology in Cowpea, Crop Sci., 39, 1762-1768, 1999.
  • Blum, A., et al., Wheat Cellular Thermotolerance is Related to Yield under Heat Stress, Euphytica, 117, Yeh, D.M., Hsu, P.Y., Heat Tolerance in English Ivy as Measured by an Electrolyte Leakage Technique, J. Hort. Sci. Biotech., 79, 298-302, 2004.
  • Rahman, H., et al., Heat Tolerance of Upland Cotton During the Fruiting Stage Evaluated using Cellular Membrane Thermostability, Field Crops Res., 85, 149-158, 2004.
  • Azhar, M.T., et al., Combining Ability Analysis of Heat Tolerance in Gossypium hirsitum L., Czech J. Genet. Plant Breed., 41, 23-28, 2005.
  • Towill, L.E., Mazur, P., Studies on the Reduction of 2,3,5-Triphenyltetrazolium Chloride as a Viability Assay for Plant Tissue Cultures, Can. J. Bot., 53, 1097-1102, 1975.
  • Nachlas, M., et al., The Determination of Lactic Dehydrogenase with a Tetrazolium Salt, Anal. Biochem., 1, , 1960.
  • Chen, H.H., et al., Adaptability of Crop Plants to High Temperature Stress, Crop Sci., 22, 719-725, 1982.
  • Krishnan, M., et al., Heat Shock Protein Synthesis and Thermotolerance in Wheat, Plant Physiol., 90, Porter, D.R., et al., Quantifying Acquired Thermal Tolerance in Winter Wheat, Crop Sci., 34, 1686-1689,
  • Mullarkey, M., Jones, P., Isolation and Analysis of Thermotolerant Mutants of Wheat, J. Exp. Bot., 51, 146, 2000.
  • Yıldız, M., Terzioğlu, S., Heat Shock of Cultivated and Wild Wheat During Early Seedling Stage: Growth, Cell Viability and Heat Shock Proteins, Acta Biol. Hung., 57, 231-246, 2006.
  • Terzi, H., Triticum aestivum L. ve Triticum durum Desf.’un Bazı Çeşitlerinde Fotosentetik Pigment Birikimi, Hücre Canlılığı ve Yüksek Sıcaklık Şoku Proteinlerinin Sentezi Üzerine Yüksek Sıcaklığın Etkisi, Yüksek Lisans Tezi, Afyonkarahisar Kocatepe Üniversitesi, Afyonkarahisar, 2006.
  • Crafts-Brandner, S.J., Salvucci, M.E., Rubisco Activase Constrains the Photosynthetic Potential of Leaves at High Temperature and CO2, Proc. Natl. Acad. Sci. USA, 97, 13430-13435, 2000.
  • Camejo, D., et al., High Temperature Effects on Photosynthetic Activity of Two Tomato Cultivars with Different Heat Susceptibility, J. Plant Physiol., 162, 281-289, 2005.
  • Xu, Q., et al., Structural Organization of Photosystem I, In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, pp.87-90, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
  • Bauer, H., Senser, M., Photosynthesis of Ivy (Hedera helix L.) after Heat Stress. II. Activity of Ribulose Biphosphate Carboxylase, Hill Reaction, and Chloroplast Ultrastructure, Z. Pflanzenphysiol, 91, 359-369, McCain, D.C., et al., Thermal Damage of Chloroplasts Envelope Membranes, Plant Physiol., 90, 606-609, Armond, P.A., et al., Dissociation of Supramolecular Complexes in Chloroplast Membranes a Manifestation of Heat Damage to the Photosynthetic Apparatus, Biochim. Biophys. Acta, 601, 433-442, 1980.
  • Berry, J., Björkman, O., Photosynthetic Response and Adaptation to Temperature in Higher Plants, Annu. Rev. Plant Physiol., 31, 491-543, 1980.
  • Gounaris, K., et al., Structural Reorganisation of Chloroplast Thylakoid Membranes in Response to Heat Stress, Biochim. Biophys. Acta, 766, 198-208, 1984.
  • Mishra, R.K., Singhal, G.S., Function of Photosynthetic Apparatus of Intact Wheat Leaves under High Light and Heat Stress and Its Relationship with Peroxidation of Thylakoid Lipids, Plant Physiol., 98, 1-6, 1992.
  • Mamedov, M., et al., Effects of Glycine-Betaine and Unsaturation of Membrane Lipids on Heat Stability of Photosynthetic Electron-Transport and Phosphorylation Reactions in Syneckocystis PCC6803, Biochim. Biophys. Acta, 1142, 1-5, 1993.
  • Nash, D., et al., Heat Inactivation of Oxygen Evolution in Photosystem II from Spinach Chloroplasts, Biochim. Biophys. Acta, 807, 127-133, 1985.
  • Thompson, L.K., et al., Molecular Basis of Heat Denaturation of Photosystem II, Biochemistry, 28, 6696, 1998.
  • Enami, I., et al., Is the Primary Cause of Thermal Inactivation of Oxygen Evolution in Spinach PS II Membranes Release of the Extrinsic 33 kDa Protein or of Mn?, Biochim. Biophys. Acta, 1186, 52-58, 1994.
  • Sundby, C., et al., Temperature Dependent Changes in the Antenna Size of Photosystem II. Reversible Conversion of Photosystem II Alpha to Photosystem II Beta, Biochim. Biophys. Acta, 851, 475-483, 1986.
  • Cao, J., Govindjee, Chlorophyll a Fluorescence Transient as an Indicator of Active and Inactive Photosystem II in Thylakoid Membranes, Biochim. Biophys. Acta, 1015, 180-188, 1990.
  • Al-Khatib, K., Paulsen, G.M., Enhancement of Thermal Injury to Photosynthesis in Wheat Plants and Thylakoids by High Light Intensity, Plant Physiol., 90, 1041-1048, 1989.
  • Stidham, M.A., et al., Temperature Dependence of Photosynthesis in Agropyron smithii Rydb. II. Contribution from Electron Transport and Photophosphorylation, Plant Physiol., 69, 929-934, 1982.
  • Sharkey, T.D., et al., Increased Heat Sensitivity of Photosynthesis in Tobacco Plants with Reduced Rubisco Activase, Photosynth. Res., 67, 147-156, 2001.
  • Pearcy, R.W., Effects of Growth Temperature on the Thermal Stability of the Photosynthetic Apparatus of Atriplex lentiformis (Torr.) Wats, Plant Physiol., 59, 873-878, 1977.
  • Feller, U., et al., Moderately High Temperatures Inhibit Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-mediated Activation of Rubisco, Plant Physiol., 116, 539-546, 1998.
  • Law, R.D., Crafts-Brandner, S.J., Inhibition and Acclimation of Photosynthesis to Heat Stress is Closely Correlated with Activation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase, Plant Physiol., 120, Bernacchi, C.J., et al., Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis In Vivo, Plant Physiol., 130, 1992-1998,
  • Portis, A.R., Rubisco Activase: Rubisco’s Catalytic Chaperone, Photosynth. Res., 75, 11-27, 2003.
  • Salvucci, M.E., Crafts-Brandner, S.J., Mechanism for Deactivation of Rubisco under Moderate Heat Stress, Physiol. Plant., 122, 513-519, 2004.
  • Crafts-Brandner, S.J., Law, R.D., Effect of Heat Stress on the Inhibition and Recovery of the Ribulose-1,5- bisphosphate Carboxylase/Oxygenase Activation State, Planta, 212, 67-74, 2000.
  • Crafts-Brandner, S.J., Salvucci, M.E., Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress, Plant Physiol., 129, 1773-1780, 2002.
  • Harding, S.A., et al., Photosynthetic Decline from High Temperature Stress during Maturation of Wheat. I. Interaction with Senescence Process, Plant Physiol., 92, 648-653, 1990.
  • Murakami, Y., et al., Trienoic Fatty Acids and Plant Tolerance of High Temperature, Science, 287, 47s6-479, Al-Khatib, K., Paulsen, G.M., Photosynthesis and Productivity during High Temperature Stress of Wheat Cultivars from Major World Regions, Crop Sci., 30, 1127-1132, 1990.
  • Havaux, M., Tardy, F., Temperature-dependent Adjustment of the Thermal Stability of Photosystem II In Vivo: Possible Involvement of Xanthophyll-cycle Pigments, Planta, 198, 324-333, 1996.
  • Havaux, M., Rapid Photosynthetic Adaptation to Heat Stress Triggered in Potato Leaves by Moderately Elevated Temperatures, Plant Cell Environ., 16, 461-467, 1993.
  • Havaux, M., Carotenoids as Membrane Stabilizers in Chloroplasts, Trends Plant Sci., 3, 147-151, 1998. van Hasselt, P.R., Strikwerda, J.T., PigmentDegradation in Discs of the Thermophilic Cucumis sativus as
  • Affectedby Light, Temperature, Sugar Application and Inhibitors, PlantPhysiol., 37, 253-257, 1976.
  • Feierabend, J., Capacity for Chlorophyll Synthesisin Heat-bleached 70S Ribosome-deficient Rye Leaves, Planta, 135, 83-88, 1977.
  • Tewari, A.K., Tripathy, B.C., Temperature Stress-induced Impairment of Chlorophyll Biosynthetic Reactions in Cucumber and Wheat, Plant Physiol., 117, 851-858, 1998.
  • Hodgins, R., van Huystee, R.B., Porphyrin Metabolism in Chill Stressed Maize (Zea mays L.), J. Plant Physiol. 126, 257-268, 1986.
  • O’Mahony, P, et al., Identification of Acquired Thermotolerance Deficiency within Ditelosomic Series of ‘Chinese Spring’ Wheat, Plant Physiol. Biochem., 38, 243-252, 2000.
  • Burke, J.J., Integration of Acquired Thermotolerance within the Developmental Program of Seed Reserve Mobilization, In: Cherry, J.H. (Ed.), Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, pp.191-200, Springer-Verlag, Berlin, 1994.
  • Burke, J.J., Identification of Genetic Diversity and Mutations in Higher Plant Acquired Thermotolerance, Physiol. Plant., 112, 167-170, 2001.
  • Wells, R., et al., Cultivar Differences in Canopy Apparent Photosynthesis and Their Relationship to Seed Yield in Soybeans, Crop Sci., 22, 886-890, 1982.
  • Cornish, K., et al., Enhanced Photosynthesis and Stomatal Conductance of Pima Cotton (Gossypium barbadense L.) Bred for Increased Yield, Plant Physiol., 97, 484-489, 1991.
  • Sasaki, H., Ishii, R., Cultivar Differences in Leaf Photosynthesis of Rice Bred in Japan, Photosynth. Res., 32, Kasuga, M., et al., Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-inducible Transcription Factor, Nature Biotechnol., 17, 287-291, 1999.
  • Dunwell, J.M., Transgenic Approaches to Crop Improvement, J. Exp. Bot., 51, 487-496, 2000.

DETERMINATION OF TOLERANCE TO HIGH TEMPERATURE STRESS OF PLANTS WITH CELL VIABILITY AND PHOTOSYNTHETIC PIGMENTATION TESTS

Yıl 2007, Cilt: 23 Sayı: 1, 47 - 60, 01.02.2007

Öz

The response mechanisms of plant genotypes to high temperature and determination of roles of these mechanisms in high temperature tolerance are important. The spectrophotometric-based tests such as photosynthetic pigment (chlorophyll a+b and carotenoids) accumulation test, and cell viability test which is related to reduction of tetrazolium salts by viable cells were used in determination of genetic variability in point of high temperature tolerance among species or cultivars.

Kaynakça

  • Wang, W.X, et al., Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance, Planta, 218, 1-14, 2003.
  • Bray, E.A., et al., Responses to Abiotic Stresses, In: Buchanan, B., Gruissem, W., Jones, R. (Eds.), Biochemistry and Molecular Biology of Plants, pp.1158-1203, Rockville, MD: ASPB, 2000.
  • Wang, W.X, et al., Biotechnology of Plant Osmotic Stress Tolerance: Physiological and Molecular Considerations, Acta Hort., 560, 285-292, 2001.
  • Paulsen, G.M., High Temperature Responses of Crop Plants, In: Boote et al. (Eds.), Physiology and Determination of Crop Yield, pp.365-389, ASA, CSSA, and SSSA, Madison, 1994.
  • Ishag, H.M., Mohamed, A.B., Phasic Development of Spring Wheat and Stability of Yield and Its Components in Hot Environments, Field Crops Res., 46, 169-176, 1996.
  • Setimela, P.S., et al., Screening Sorghum Seedlings for Heat Tolerance using a Laboratory Method, Eur. J. Agron., 23, 103-107, 2005.
  • Reynolds, M.P., et al., Evaluating Physiological Traits to Complement Empirical Selection for Wheat in Warm Environments, Euphytica, 100, 84-95, 1998.
  • Batts, G.R., et al., Yield and Partitioning in Crops of Contrasting Cultivars of Winter Wheat in Response to CO2 and Temperature in Field Studies using Temperature Gradient Tunnels, J. Agric. Sci., Cambridge, 130, 27, 1998.
  • Akkaya, A., Buğday Yetiştiriciliği, s. 225, Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş, 1994.
  • Fokar, M., et al., Heat Tolerance in Spring Wheat. I. Genetic Variability and Heritability of Cellular Thermotolerance, Euphytica, 104, 1-8, 1998.
  • Ibrahim, A.M.H., Quick, J.S., Heritability of Heat Tolerance in Winter and Spring Wheat, Crop Sci., 41, 1405, 2001a.
  • Saadalla, M.M., et al., Heat Tolerance in Winter Wheat: I. Hardening and Genetic Effects on Membrane Thermostability, Crop Sci., 30, 1243-1247, 1990.
  • Ibrahim, A.M.H., Quick, J.S., Genetic Control of High Temperature Tolerance in Wheat as Measured Membrane Thermal Stability, Crop Sci., 41, 1405-1407, 2001b.
  • Burke, J.J., Characterization of Acquired Thermotolerance in Soybean Seedlings, Plant Physiol. Biochem., , 601-607, 1998.
  • Karim, M.A., et al., Photosynthetic Activity of Developing Leaves of Zea mays is Less Affected by Heat Stress than that of Developed Leaves, Physiol. Plant., 105, 685-693, 1999.
  • Dash, S., Mohanty, N., Evaluation of Assay for the Analysis of Thermotolerance and Recovery Potentials of Seedlings of Wheat (Triticum aestivum L.) Cultivars, J. Plant Physiol., 158, 1153-1165, 2001.
  • Levitt, J., Responses of Plants to Environmental Stress, I. Chilling, Freezing and High Temperature Stresses, pp.607, Academic Press, Inc., 2nd Edition, 1980.
  • Jones, R.A., Qualset, C.O., Breeding Crops for Environmental Stress Tolerance, In: Collins, G.B., Petolino, J.G. (Eds.), Application of Genetic Engineering to Crop Improvement, pp.305-340, Dordrecht, Netherlands, Nijhoff/Junk, 1984.
  • Taiz, L., Zeiger, E., Plant Physiology, 3th Edition, pp.602-611, Sinauer Associates, Inc., 2002. http://7.tamu-commerce.edu/agscience/clasnote/pls381/8.s
  • Houghton, J.T., et al., (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), 944 pp.,
  • Cambridge University Press, UK, 2001.
  • Marcum, K.B., Cell Membrane Thermostability and Whole-Plant Heat Tolerance of Kentucky Bluegrass, Crop Sci., 38, 1214-1218, 1998.
  • Abernethy, R.H., et al., Thermotolerance is Developmentally Dependent in Germinating Wheat Seed, Plant Physiol., 89, 569-576, 1989.
  • Huang, B., et al., Shoot Physiological Responses of Two Bentgrass Cultivars to High Temperature and Poor Soil Aeration, Crop Sci., 38, 1219-1225, 1998.
  • Larkindale, J., Huang, B., Changes of Lipid Composition and Saturation Level in Leaves and Roots for Heat-stressed and Heat-acclimated Creeping Bentgrass (Agrostis stolonifera), Environ. Exp. Bot., 51, 57-67, Stone, P., The Effects of Heat Stress on Cereal Yield and Quality, In: Basra, A.S. (Ed.), Crop Responses and Adaptations to Temperature Stress, pp. 243-291, Food Products Press, Binghamton, NY, 2001.
  • Gusta, L.V., Chen. T.H.H., The Physiology of Water and Temperature Stress, In: Heyne, E.G. (Ed.), Wheat and Wheat Improvement (2nd ed.), pp.115-149, ASA, CSSA, and SSSA, Madison, WI, 1987.
  • Burke, J.J., High Temperature Stress and Adaptation in Crops, In: Alscher, R.G., Cummings, J.R. (Eds.), Stress Response in Plants: Adaptation and Acclimation Mechanisms, pp.295-309, WileyLiss, New York, Burke, J.J., et al., Crop-Specific Thermal Kinetic Windows in Relation to Wheat and Cotton Biomass Production, Agron. J., 80, 553-556, 1988.
  • Nguyen.,H.T., Joshi, P.C., Molecular Strategies for The Genetic Dissection of Water and High Temperature Stress Adaptation in Cereal Crops, Proceedings of an International Symposium on the Adaptation of Food Crops to Temperature and Water Stress, , Taiwan, 119, 13-18 August, 1992.
  • Burke, J.J., et al., Isolation of Arabidopsis Mutants Lacking Components of Acquired Thermotolerance, Plant Physiol., 123, 575-587, 2000.
  • Vierling, E., The Roles of Heat Shock Proteins in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 620, 1991.
  • Hatice, G., Atilla, E., Some Physiological Changes in Strawberry (Fragaria × ananassa ‘Camarosa’) Plants Under Heat Stress, J. Hort. Sci. Biotech., 78, 894-898, 2003.
  • Sangwan, V., et al., Opposite Changes in Membrane Fluidity Mimic Cold and Heat Stress Activation of Distinct Plant MAP Kinase Pathways, Plant J., 31, 629-638, 2002.
  • Maestri, E., et al., Molecular Genetics of Heat Tolerance and Heat Shock Proteins in Cereals, Plant Mol. Biol., 48, 667-681, 2002.
  • Schlesinger, M.J., et al., Heat Shock from Bacteria to Man, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 1982.
  • Blum, A., Plant Breeding for Stress Environments, 223 pp., CRC Press, Inc., Boca Raton, Florida, 1988.
  • Suss, K.H., Yordanov, I.T, Biosynthetic Causes of In Vivo Acquired Thermotolerance of Photosynthetic Light Reactions and Metabolic Responses of Chloroplast to Heat Stress, Plant Physiol., 81, 192-199, 1986.
  • Lin CY., et al., Solute Leakage in Soybean Seedlings under Various Heat Shock Regimes, Plant Cell Physiol., 26, 1493-1498, 1985.
  • Raison J.K., et al., Membrane Properties in Relation to The Adaptation of Plants to High and Low Temperature Stress, In: Turner, N.C., Kramer, P.J. (Eds.), Adaptation of Plants to Water and High Temperature Stress, pp.261-273, Wiley, New York, USA, 1980.
  • Weigel, H.J., The Effect of High Temperatures on Leaf Cells of Valerianella: Relative Heat Stability of the Tonoplast Membrane of Mesophyll Vacuoles, Planta, 159, 398-403, 1983.
  • Santarius, K.A., et al., Effects of High Temperature on the Photosynthetic Apparatus in Isolated Mesophyll Protoplasts of Valerianella locusta (L.) Betcke, Photosynthetica, 25, 17-26, 1991.
  • Vigh, L., et al., The Primary Signal in the Biological Perception of Temperature: Pd-catalyzed Hydrogenation of Membrane Lipids Stimulated the Expression of the desA Gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA, 90, 9090-9094, 1993.
  • Horvath, I., et al., Membrane Physical State Controls the Signaling Mechanism of the Heat Shock Response in Synechocystis PCC 6803: Identification of hsp17 as a Fluidity Gene, Proc. Natl. Acad. Sci. USA, 95, 3513- 3518, 1998.
  • Whitaker, B.D., et al., Influence of Pre-storage Heat and Calcium Pre-treatments on Lipid Metabolism in Golden Delicious Apples, Phytochemistry, 45, 465-472, 1997.
  • Grover, A., et al., Production of High Temperature Tolerant Transgenic Plants through Manipulation of Membrane Lipids, Curr. Sci., 79, 557-559, 2000.
  • Klueva, N.Y., et al., Mechanisms of Thermotolerance in Crops, In: Basra, A.S. (Ed.), Crop Responses and Adaptations to Temperature Stress, pp.177-217, Food Products Press, Binghamton, NY, 2001.
  • Santarius, K.S., Muller, M., Investigations on Heat Resistance on Spinach Leaves, Planta, 146, 529-538, McCourt, P., et al., The Effects of Reduced Amounts of Lipid Unsaturation on Chloroplast Ultrastructure and Photosynthesis in a Mutant of Arabidopsis, Plant Physiol., 84, 353-360, 1987.
  • Kunst, L., et al., Enhanced Thermal Tolerance in a Mutant of Arabidopsis Deficient in Palmitic Acid Unsaturation, Plant Physiol., 91, 401-408, 1989a.
  • Kunst, L., et al., A Mutant of Arabidopsis Deficient in Desaturation of Palmitic Acid in Leaf Lipids, Plant Physiol., 90, 943-947, 1989b.
  • Behl, R.K., et al., High Temperature Tolerance in Relation to Changes in Lipids in Mutant Wheat, Tropenlandwirt, 97, 131-135, 1996.
  • Yang, J.F., et al., Influence of High Temperature and Low Humidity on the Fatty Acid Composition of Membrane Lipids in Wheat, Acta Bot. Sin., 26, 386-391, 1984.
  • Diepenbrock, W., et al., FA Composition of Root Membrane Lipids from 2 Potatoes (S. tuberosum L.) Genotypes Differing in Heat Tolerance as Affected by Supraoptimal Rootzone Temperature, Agrochimica, , 478-486, 1989.
  • Francisco, J.P., et al., Ascorbic Acid and Flavonoidperoxidase Reaction as a Detoxifying System of H2O2 in Grapevine Leaves, Phytochemistry, 60, 573-580, 2002.
  • Diego, A.M., et al., Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress, Environ. Exp. Bot., 49, 69-76, 2003.
  • Desikan, R., et al., Generation of Active Oxygen in Elicited Cells of Arabidopsis thaliana is Mediated by a NADPH Oxidaselike Enzyme, FEBS Lett., 382, 213-217, 1996.
  • Shewfelt, R.L., Purvis, A.C., Toward a Compherensive Model for Lipid Peroxidation in Plant Tissue Disorders, Hort. Sci., 30, 213-218, 1995.
  • Foyer, C.H., et al., Protection Against Oxygen Radicals: An Important Defense Mechanism Studied in Transgenic Plants, Plant Cell Environ., 17, 507-523, 1994.
  • Sullivan, C.Y., Mechanisms of Heat and Drought Resistance in Grain Sorghum and Methods of Measurement, In: Rao, N.G.P., House, L.R. (Eds.), Sorghum in the Seventies, Oxford and IPH Publishing Co., New Delhi, India, 1972.
  • Shanahan, J.F., et al., Membrane Thermostability and Heat Tolerance of Spring Wheat. Crop Sci., 30, 251, 1990.
  • Ismail, A.M., Hall, A.E., Reproductive-stage Heat Tolerance, Leaf Membrane Thermostability and Plant Morphology in Cowpea, Crop Sci., 39, 1762-1768, 1999.
  • Blum, A., et al., Wheat Cellular Thermotolerance is Related to Yield under Heat Stress, Euphytica, 117, Yeh, D.M., Hsu, P.Y., Heat Tolerance in English Ivy as Measured by an Electrolyte Leakage Technique, J. Hort. Sci. Biotech., 79, 298-302, 2004.
  • Rahman, H., et al., Heat Tolerance of Upland Cotton During the Fruiting Stage Evaluated using Cellular Membrane Thermostability, Field Crops Res., 85, 149-158, 2004.
  • Azhar, M.T., et al., Combining Ability Analysis of Heat Tolerance in Gossypium hirsitum L., Czech J. Genet. Plant Breed., 41, 23-28, 2005.
  • Towill, L.E., Mazur, P., Studies on the Reduction of 2,3,5-Triphenyltetrazolium Chloride as a Viability Assay for Plant Tissue Cultures, Can. J. Bot., 53, 1097-1102, 1975.
  • Nachlas, M., et al., The Determination of Lactic Dehydrogenase with a Tetrazolium Salt, Anal. Biochem., 1, , 1960.
  • Chen, H.H., et al., Adaptability of Crop Plants to High Temperature Stress, Crop Sci., 22, 719-725, 1982.
  • Krishnan, M., et al., Heat Shock Protein Synthesis and Thermotolerance in Wheat, Plant Physiol., 90, Porter, D.R., et al., Quantifying Acquired Thermal Tolerance in Winter Wheat, Crop Sci., 34, 1686-1689,
  • Mullarkey, M., Jones, P., Isolation and Analysis of Thermotolerant Mutants of Wheat, J. Exp. Bot., 51, 146, 2000.
  • Yıldız, M., Terzioğlu, S., Heat Shock of Cultivated and Wild Wheat During Early Seedling Stage: Growth, Cell Viability and Heat Shock Proteins, Acta Biol. Hung., 57, 231-246, 2006.
  • Terzi, H., Triticum aestivum L. ve Triticum durum Desf.’un Bazı Çeşitlerinde Fotosentetik Pigment Birikimi, Hücre Canlılığı ve Yüksek Sıcaklık Şoku Proteinlerinin Sentezi Üzerine Yüksek Sıcaklığın Etkisi, Yüksek Lisans Tezi, Afyonkarahisar Kocatepe Üniversitesi, Afyonkarahisar, 2006.
  • Crafts-Brandner, S.J., Salvucci, M.E., Rubisco Activase Constrains the Photosynthetic Potential of Leaves at High Temperature and CO2, Proc. Natl. Acad. Sci. USA, 97, 13430-13435, 2000.
  • Camejo, D., et al., High Temperature Effects on Photosynthetic Activity of Two Tomato Cultivars with Different Heat Susceptibility, J. Plant Physiol., 162, 281-289, 2005.
  • Xu, Q., et al., Structural Organization of Photosystem I, In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, pp.87-90, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
  • Bauer, H., Senser, M., Photosynthesis of Ivy (Hedera helix L.) after Heat Stress. II. Activity of Ribulose Biphosphate Carboxylase, Hill Reaction, and Chloroplast Ultrastructure, Z. Pflanzenphysiol, 91, 359-369, McCain, D.C., et al., Thermal Damage of Chloroplasts Envelope Membranes, Plant Physiol., 90, 606-609, Armond, P.A., et al., Dissociation of Supramolecular Complexes in Chloroplast Membranes a Manifestation of Heat Damage to the Photosynthetic Apparatus, Biochim. Biophys. Acta, 601, 433-442, 1980.
  • Berry, J., Björkman, O., Photosynthetic Response and Adaptation to Temperature in Higher Plants, Annu. Rev. Plant Physiol., 31, 491-543, 1980.
  • Gounaris, K., et al., Structural Reorganisation of Chloroplast Thylakoid Membranes in Response to Heat Stress, Biochim. Biophys. Acta, 766, 198-208, 1984.
  • Mishra, R.K., Singhal, G.S., Function of Photosynthetic Apparatus of Intact Wheat Leaves under High Light and Heat Stress and Its Relationship with Peroxidation of Thylakoid Lipids, Plant Physiol., 98, 1-6, 1992.
  • Mamedov, M., et al., Effects of Glycine-Betaine and Unsaturation of Membrane Lipids on Heat Stability of Photosynthetic Electron-Transport and Phosphorylation Reactions in Syneckocystis PCC6803, Biochim. Biophys. Acta, 1142, 1-5, 1993.
  • Nash, D., et al., Heat Inactivation of Oxygen Evolution in Photosystem II from Spinach Chloroplasts, Biochim. Biophys. Acta, 807, 127-133, 1985.
  • Thompson, L.K., et al., Molecular Basis of Heat Denaturation of Photosystem II, Biochemistry, 28, 6696, 1998.
  • Enami, I., et al., Is the Primary Cause of Thermal Inactivation of Oxygen Evolution in Spinach PS II Membranes Release of the Extrinsic 33 kDa Protein or of Mn?, Biochim. Biophys. Acta, 1186, 52-58, 1994.
  • Sundby, C., et al., Temperature Dependent Changes in the Antenna Size of Photosystem II. Reversible Conversion of Photosystem II Alpha to Photosystem II Beta, Biochim. Biophys. Acta, 851, 475-483, 1986.
  • Cao, J., Govindjee, Chlorophyll a Fluorescence Transient as an Indicator of Active and Inactive Photosystem II in Thylakoid Membranes, Biochim. Biophys. Acta, 1015, 180-188, 1990.
  • Al-Khatib, K., Paulsen, G.M., Enhancement of Thermal Injury to Photosynthesis in Wheat Plants and Thylakoids by High Light Intensity, Plant Physiol., 90, 1041-1048, 1989.
  • Stidham, M.A., et al., Temperature Dependence of Photosynthesis in Agropyron smithii Rydb. II. Contribution from Electron Transport and Photophosphorylation, Plant Physiol., 69, 929-934, 1982.
  • Sharkey, T.D., et al., Increased Heat Sensitivity of Photosynthesis in Tobacco Plants with Reduced Rubisco Activase, Photosynth. Res., 67, 147-156, 2001.
  • Pearcy, R.W., Effects of Growth Temperature on the Thermal Stability of the Photosynthetic Apparatus of Atriplex lentiformis (Torr.) Wats, Plant Physiol., 59, 873-878, 1977.
  • Feller, U., et al., Moderately High Temperatures Inhibit Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-mediated Activation of Rubisco, Plant Physiol., 116, 539-546, 1998.
  • Law, R.D., Crafts-Brandner, S.J., Inhibition and Acclimation of Photosynthesis to Heat Stress is Closely Correlated with Activation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase, Plant Physiol., 120, Bernacchi, C.J., et al., Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis In Vivo, Plant Physiol., 130, 1992-1998,
  • Portis, A.R., Rubisco Activase: Rubisco’s Catalytic Chaperone, Photosynth. Res., 75, 11-27, 2003.
  • Salvucci, M.E., Crafts-Brandner, S.J., Mechanism for Deactivation of Rubisco under Moderate Heat Stress, Physiol. Plant., 122, 513-519, 2004.
  • Crafts-Brandner, S.J., Law, R.D., Effect of Heat Stress on the Inhibition and Recovery of the Ribulose-1,5- bisphosphate Carboxylase/Oxygenase Activation State, Planta, 212, 67-74, 2000.
  • Crafts-Brandner, S.J., Salvucci, M.E., Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress, Plant Physiol., 129, 1773-1780, 2002.
  • Harding, S.A., et al., Photosynthetic Decline from High Temperature Stress during Maturation of Wheat. I. Interaction with Senescence Process, Plant Physiol., 92, 648-653, 1990.
  • Murakami, Y., et al., Trienoic Fatty Acids and Plant Tolerance of High Temperature, Science, 287, 47s6-479, Al-Khatib, K., Paulsen, G.M., Photosynthesis and Productivity during High Temperature Stress of Wheat Cultivars from Major World Regions, Crop Sci., 30, 1127-1132, 1990.
  • Havaux, M., Tardy, F., Temperature-dependent Adjustment of the Thermal Stability of Photosystem II In Vivo: Possible Involvement of Xanthophyll-cycle Pigments, Planta, 198, 324-333, 1996.
  • Havaux, M., Rapid Photosynthetic Adaptation to Heat Stress Triggered in Potato Leaves by Moderately Elevated Temperatures, Plant Cell Environ., 16, 461-467, 1993.
  • Havaux, M., Carotenoids as Membrane Stabilizers in Chloroplasts, Trends Plant Sci., 3, 147-151, 1998. van Hasselt, P.R., Strikwerda, J.T., PigmentDegradation in Discs of the Thermophilic Cucumis sativus as
  • Affectedby Light, Temperature, Sugar Application and Inhibitors, PlantPhysiol., 37, 253-257, 1976.
  • Feierabend, J., Capacity for Chlorophyll Synthesisin Heat-bleached 70S Ribosome-deficient Rye Leaves, Planta, 135, 83-88, 1977.
  • Tewari, A.K., Tripathy, B.C., Temperature Stress-induced Impairment of Chlorophyll Biosynthetic Reactions in Cucumber and Wheat, Plant Physiol., 117, 851-858, 1998.
  • Hodgins, R., van Huystee, R.B., Porphyrin Metabolism in Chill Stressed Maize (Zea mays L.), J. Plant Physiol. 126, 257-268, 1986.
  • O’Mahony, P, et al., Identification of Acquired Thermotolerance Deficiency within Ditelosomic Series of ‘Chinese Spring’ Wheat, Plant Physiol. Biochem., 38, 243-252, 2000.
  • Burke, J.J., Integration of Acquired Thermotolerance within the Developmental Program of Seed Reserve Mobilization, In: Cherry, J.H. (Ed.), Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, pp.191-200, Springer-Verlag, Berlin, 1994.
  • Burke, J.J., Identification of Genetic Diversity and Mutations in Higher Plant Acquired Thermotolerance, Physiol. Plant., 112, 167-170, 2001.
  • Wells, R., et al., Cultivar Differences in Canopy Apparent Photosynthesis and Their Relationship to Seed Yield in Soybeans, Crop Sci., 22, 886-890, 1982.
  • Cornish, K., et al., Enhanced Photosynthesis and Stomatal Conductance of Pima Cotton (Gossypium barbadense L.) Bred for Increased Yield, Plant Physiol., 97, 484-489, 1991.
  • Sasaki, H., Ishii, R., Cultivar Differences in Leaf Photosynthesis of Rice Bred in Japan, Photosynth. Res., 32, Kasuga, M., et al., Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-inducible Transcription Factor, Nature Biotechnol., 17, 287-291, 1999.
  • Dunwell, J.M., Transgenic Approaches to Crop Improvement, J. Exp. Bot., 51, 487-496, 2000.
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA83AY96NG
Bölüm Makale
Yazarlar

Mustafa Yıldız Bu kişi benim

Hakan Terzi Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2007
Yayımlandığı Sayı Yıl 2007 Cilt: 23 Sayı: 1

Kaynak Göster

APA Yıldız, M., & Terzi, H. (2007). BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 23(1), 47-60.
AMA Yıldız M, Terzi H. BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Şubat 2007;23(1):47-60.
Chicago Yıldız, Mustafa, ve Hakan Terzi. “BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 23, sy. 1 (Şubat 2007): 47-60.
EndNote Yıldız M, Terzi H (01 Şubat 2007) BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 23 1 47–60.
IEEE M. Yıldız ve H. Terzi, “BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 23, sy. 1, ss. 47–60, 2007.
ISNAD Yıldız, Mustafa - Terzi, Hakan. “BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 23/1 (Şubat 2007), 47-60.
JAMA Yıldız M, Terzi H. BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2007;23:47–60.
MLA Yıldız, Mustafa ve Hakan Terzi. “BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 23, sy. 1, 2007, ss. 47-60.
Vancouver Yıldız M, Terzi H. BİTKİLERİN YÜKSEK SICAKLIK STRESİNE TOLERANSININ HÜCRE CANLILIĞI VE FOTOSENTETİK PİGMENTASYON TESTLERİ İLE BELİRLENMESİ. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2007;23(1):47-60.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.