Araştırma Makalesi
BibTex RIS Kaynak Göster

Ekserji Analiz Metoduyla Füzeler ve İnsansız Hava Araçları (UAV) İçin Tasarlanmış Bir Turbojet Motorunun Maksimum Çalışma Performansının Doğrulanması

Yıl 2019, Cilt: 35 Sayı: 1, 13 - 32, 30.04.2019

Öz

Bu çalışma,
füzeler ve insansız hava araçları için tasarlanan bir turbojet motorunun
performans doğrulaması ekserji analiz metodu ile yapılmıştır. Bu araştırma için
bazı ekserjetik performans doğrulama parametreleri geliştirilmiş ve
kullanılmıştır. Bu parametreler, yeni geliştirilen motorun performans,
sürdürülebilirlik ve çevresel etki seviyelerini belirlemek için motor
tasarımcılarına yardımcı olacaktır. Maksimum çalışma şartları için incelenen
turbojet motorunun ekserji verimi, iyileştirilmiş ekserji verimi, atık ekserji
oranı, yakıt ekserjisi atık oranı, atık ekserji iyileştirme potansiyeli oranı,
üretim kaybı oranı, yakıt ekserjisi iyileştirme potansiyeli oranı, atık ekserji
maliyet akışı, çevresel etki faktörü, ekolojik etki faktörü, sürdürebilirlik
indeksi ve sürdürülebilir verimlilik faktörü; sırasıyla %9.71, %52.55, %90.29, %90.29,  %90.29, %929.54,  %81.52, 32.29x10-3 kW/$, 9.295, 10.295, 0.108 ve 1.108 olarak hesaplanmıştır. Ekserjetik performans
analiz sonuçları; motorun ekserji verimi arttırmak ve çevresel etkilerini azaltmak
için tasarımcıların ve araştırmacıların kompresör ve yanma odasını
iyileştirmeye odaklanmaları gerektiğini göstermiştir.

Kaynakça

  • [1] Turan O. Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy, 2012, 46: 51-61.
  • [2] Sohret Y, Dinc A, Karakoc TH. Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission. Energy, 2015, 93:716-729.
  • [3] Kaya N, Turan O, Midilli A, Karakoc TH. Exergetic sustainability improvement potentials of a hydrogen fueled turbofan engine UAV by heating its fuel with exhaust gasses. Int. J. Hydrog. Energy, 2016, 41(19):8307-8322.
  • [4] Aviation Gas Turbine Forecast. The Market for Missile/Drone/UAV Engines 2010-2019. www.forecastinternational.com/
  • [5] Aviation Gas Turbine Forecast. Williams International F107/F122/F41.Archived Report 2014.https://www.forecastinternational.com/
  • [6] Aydın H, Turan O, Karakoc TH, Midilli A. Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine. International Journal of Green Energy 2015, 12:28–40.
  • [7] Atashkari K, Nariman-Zadeh N, Pilechi A, Jamali A, Yao X. Thermodynamic pareto optimization of turbojet engines using multi-objective genetic algorithms. Int J ThermSci, 2005, 44(11): 1061-1071.
  • [8] Homaifar A, Lai HY, McCormic E. System optimization of turbofan engines using genetic algorithms. Appl Math Model, 1994, 18(2):72-83.
  • [9] Liu F, Sirignano WA. Turbojet and turbofan engine performance increases through turbine burners. J Propul Power, 2001, 17(3): 695-705.
  • [10] Balli O. Afterburning effect on the energetic and exergetic performance ofan experimental turbojet engine (TJE). Int J Exergy, 2014, 14 (2): 205–236.
  • [11] Balli O, Aras H, Aras N, Hepbasli A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int J Exergy, 2008, 5(5/6): 567-581.
  • [12] Bejan A, Siems D. The need for exergy analysis and thermodynamic optimization in aircraft development.Int J Exergy,2001, 1(1):14-24.
  • [13] Roth BA, Mavris DN. A comparison of thermodynamic loss models suitable for gas turbine propulsion: theory and taxonomy; AIAA paper, 2000, pp. 3714.
  • [14] Roth BA, Mavris DN. A comparison of thermodynamic loss models applied to the J79 Turbojet Engine. Joint Propulsion Conference and Exhibit, 36th, Huntsville, July, Alabama, USA; 2000.
  • [15] Ehyaei MA, Anjiridezfuli A, Rosen MA. Exergetic analysis of an aircraft turbojet engine with an afterburner.Thermal Science, 2013, 17(4):1181-1194.
  • [16] Turgut ET, Karakoc TH, Hepbasli A. Exergetic analysis of an aircraft turbofan engine. Int J Energy Res,2007, 31(14): 1383-1397.
  • [17] Turgut ET, Karakoc TH, Hepbasli A, Rosen MA. Exergy analysis of a turbofan aircraft engine.Int J Exergy, 2009, 6(2): 181-199.
  • [18] Tona C, Raviolo PA, Pellegrini LF, Oliveria Jr S. Exergy and thermodynamic analysis of a turbofan engine during a typical commercial flight. Energy, 2010, 35(2): 952-959.
  • [19] Balli O, Hepbasli A. Energetic and exergetic analyses of T56 turboprop engine. Energy Convers Manag, 2013, 73: 106-120.
  • [20] Aydin H, Turan O, Karakoc TH, Midilli A. Component-based exergetic measures of an experimental turboprop/turboshaft engine for propeller aircrafts and helicopters. Int J Exergy, 2012, 11(3): 322-348.
  • [21] Aydin H, Turan O, Midilli A, Karakoc TH. Exergetic and exergo-economic analysis of a turboprop engine: a case study for CT7-9C. Int J Exergy, 2012, 11(1): 69-82.
  • [22] Etele J, Rosen MA. Sensitivity exergy efficiencies of aerospace engines to reference environment selection.Int J Exergy, 2001, 1(2): 91-99.
  • [23] Turan O. Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method. Int J Exergy, 2012, 11(2): 252-270.
  • [24] Balli O, Hepbasli A. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 2014, 64:582-600.
  • [25] Turgut ET, Karakoc TH, Hepbasli A. Exergoeconomic analysis of an aircraft turbofan engine. Int J Exergy, 2009, 6(3): 277-294.
  • [26] Atılgan R, Turan O, Altuntas O, Aydın H, Synylo K. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy, 2013, 58: 664-671.
  • [27] Altuntas O, Karakoc TH, Hepbasli A. Exergoenvironmental analysis of pistonprop aircrafts. Int J Exergy, 2012,10(3): 290-298.
  • [28] Aydın H, Turan O, Karakoc TH, Midilli A. Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy 2013; 58: 550-560.
  • [29] Roketsan. SOM Stand off Missile. http://www.roketsan.com.tr/wp-content/uploads/2015/06/SOM-ENG-email1.pdf
  • [30] SavunmaSanayi.Org. SOM SeyirFüzesi (in Turkish). http://www.savunma-sanayi.com/2016/01/som-seyir-fuzesi.html
  • [31] ASMC-1st Air Supply and Maintenance Center. Technical Document of Turbojet Engine. 2013.
  • [32] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 8th Edition, McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121.ISBN-978-0-07-339817-4. 2014.
  • [33] Jawad H, Jaber MY, Bonney M, Rosen MA. Deriving an exergetic economic production quantity model for better sustainability.Applied Mathematical Modelling, 2016, 40: 6026–6039.
  • [34] Sohret Y, Ekici S, Altuntas O, Hepbasli A, Karakoc TH. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 2016, 83:57–69.
  • [35] Balli O. Advanced exergy analysis of a turbofan engine (TFE): Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. International Journal of Turbo&Jet Engines. 2017. ISSN (Online) 2191-0332, ISSN (Print) 0334-0082. DOI:https://doi.org/10.1515/tjj-2016-0074.
  • [36] Balli O. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 2017, 124: 599-612.
  • [37] Balli O. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering, 2017, 111:152-169.
  • [38] Kotas, T.J. The Exergy Method of Thermal Plant Analysis, Reprint ed.,Kieger, Malabar.1995.
  • [39] Tsatsaronis G, Morosuk T, Koch D, Sorgenfrei M. Understanding the thermodynamic inefficiencies in combustion processes. Energy, 2013, 62: 3-11.
  • [40] Karimi MN, Kamboj SK. Exergy destruction and chemical irreversibilities during combustion in spark-ignition engine using oxygenated and hydrocarbon fuels. International Journal of Mechanical and Industrial Engineering (IJMIE), 2012, 2(3): 7-11.
  • [41] Balli O. Exergy modeling for evaluating sustainability level of a high by-passturbofan engine used on commercial aircrafts.Applied Thermal Engineering, 2017, 123:138-155.
  • [42] Sohret Y, Sogut MZ, Karakoc TH, Turan O. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation. Int J Exergy, 2016, 20(1): 48-65.
  • [43] Bastani M, Mokhtari H, Mostafavi Sani M. Bypass rate impact on turbofan engine parameters using energy and exergy analysis. Int J of Engineering Sciencies&Research Technologies, 2015, 4(4): 387-395.
  • [44] Ekici S, Sohret Y, Coban K, Karakoc TH. Sustainability metrics of a small scale turbojet engine.International Journal of Turbo&Jet Engines. 2017.https://doi.org/10.1515/tjj-2016-0036
  • [45] Struchtrup H, Elfring GJ. External losses in high-bypas turbofan air engines.Int J Exergy, 2008, 5: 400-412.
  • [46] Balli O. Sustainable aviation metrics for an aircraft gas turbine engine from thermodynamics perspective. International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [47] Balli O, Adak I, Gunes S. Afterburner effect on the energetic and exergetic performance of J79-GE-17 engine with afterburner system used on F-4 Phantom II Aircrafts. International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [48]Balli O, SohretY, Karakoc TH. Exergy analysis of a new designed medium-scale turboprop engine used on unmanned aircraft vehicles (UAVs). International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [49] Balli O. Analyzing performance of an experimental micro turbojet engine with advanced exergy methodology. 2st International Mediterranean Science and Engineering Congress (IMSEC-2017), 25-27 October 2017, Cukurova University Congress Center, Adana, Turkey.

Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology

Yıl 2019, Cilt: 35 Sayı: 1, 13 - 32, 30.04.2019

Öz

In this study, performance evaluation of a turbojet engine designed for
missiles and Unmanned Aerial Vehicles (UAV is done with exergy analysis
methodology. Some exergetic performance assessment parameters are developed and
used for this investigation.  These
parameters help the engine designers to determine the levels of performance,
sustainability and environmental impact of the new designed engine. The exergy
efficiency,  the improved exergy
efficiency, the waste exergy ratio, the fuel exergy waste ratio, the waste
exergy improvement potential ratio, the productivity lack ratio, the fuel
exergy improvement potential ratio, the waste exergy cost rate, the
environmental effect factor, the ecological effect factor, exergetic
sustainability index and sustainable efficiency factor are estimated to be
9.71%, 52.55%, 90.29%, 90.29%,  90.29%,
929.54%,  81.52%, 32.29
x10-3 kW/$,
9.295, 10.295,
0.108 and 1.108 for the maximum operation mode of the investigated
turbojet engine, respectively. The analyzing results of exergetic performance indicate
that the designers and researchers shall focus on the improvement of engine compressor
and combustor to progress the exergy efficiency of engine and to decrease the
environmental impacts of engine.

Kaynakça

  • [1] Turan O. Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy, 2012, 46: 51-61.
  • [2] Sohret Y, Dinc A, Karakoc TH. Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission. Energy, 2015, 93:716-729.
  • [3] Kaya N, Turan O, Midilli A, Karakoc TH. Exergetic sustainability improvement potentials of a hydrogen fueled turbofan engine UAV by heating its fuel with exhaust gasses. Int. J. Hydrog. Energy, 2016, 41(19):8307-8322.
  • [4] Aviation Gas Turbine Forecast. The Market for Missile/Drone/UAV Engines 2010-2019. www.forecastinternational.com/
  • [5] Aviation Gas Turbine Forecast. Williams International F107/F122/F41.Archived Report 2014.https://www.forecastinternational.com/
  • [6] Aydın H, Turan O, Karakoc TH, Midilli A. Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine. International Journal of Green Energy 2015, 12:28–40.
  • [7] Atashkari K, Nariman-Zadeh N, Pilechi A, Jamali A, Yao X. Thermodynamic pareto optimization of turbojet engines using multi-objective genetic algorithms. Int J ThermSci, 2005, 44(11): 1061-1071.
  • [8] Homaifar A, Lai HY, McCormic E. System optimization of turbofan engines using genetic algorithms. Appl Math Model, 1994, 18(2):72-83.
  • [9] Liu F, Sirignano WA. Turbojet and turbofan engine performance increases through turbine burners. J Propul Power, 2001, 17(3): 695-705.
  • [10] Balli O. Afterburning effect on the energetic and exergetic performance ofan experimental turbojet engine (TJE). Int J Exergy, 2014, 14 (2): 205–236.
  • [11] Balli O, Aras H, Aras N, Hepbasli A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int J Exergy, 2008, 5(5/6): 567-581.
  • [12] Bejan A, Siems D. The need for exergy analysis and thermodynamic optimization in aircraft development.Int J Exergy,2001, 1(1):14-24.
  • [13] Roth BA, Mavris DN. A comparison of thermodynamic loss models suitable for gas turbine propulsion: theory and taxonomy; AIAA paper, 2000, pp. 3714.
  • [14] Roth BA, Mavris DN. A comparison of thermodynamic loss models applied to the J79 Turbojet Engine. Joint Propulsion Conference and Exhibit, 36th, Huntsville, July, Alabama, USA; 2000.
  • [15] Ehyaei MA, Anjiridezfuli A, Rosen MA. Exergetic analysis of an aircraft turbojet engine with an afterburner.Thermal Science, 2013, 17(4):1181-1194.
  • [16] Turgut ET, Karakoc TH, Hepbasli A. Exergetic analysis of an aircraft turbofan engine. Int J Energy Res,2007, 31(14): 1383-1397.
  • [17] Turgut ET, Karakoc TH, Hepbasli A, Rosen MA. Exergy analysis of a turbofan aircraft engine.Int J Exergy, 2009, 6(2): 181-199.
  • [18] Tona C, Raviolo PA, Pellegrini LF, Oliveria Jr S. Exergy and thermodynamic analysis of a turbofan engine during a typical commercial flight. Energy, 2010, 35(2): 952-959.
  • [19] Balli O, Hepbasli A. Energetic and exergetic analyses of T56 turboprop engine. Energy Convers Manag, 2013, 73: 106-120.
  • [20] Aydin H, Turan O, Karakoc TH, Midilli A. Component-based exergetic measures of an experimental turboprop/turboshaft engine for propeller aircrafts and helicopters. Int J Exergy, 2012, 11(3): 322-348.
  • [21] Aydin H, Turan O, Midilli A, Karakoc TH. Exergetic and exergo-economic analysis of a turboprop engine: a case study for CT7-9C. Int J Exergy, 2012, 11(1): 69-82.
  • [22] Etele J, Rosen MA. Sensitivity exergy efficiencies of aerospace engines to reference environment selection.Int J Exergy, 2001, 1(2): 91-99.
  • [23] Turan O. Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method. Int J Exergy, 2012, 11(2): 252-270.
  • [24] Balli O, Hepbasli A. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 2014, 64:582-600.
  • [25] Turgut ET, Karakoc TH, Hepbasli A. Exergoeconomic analysis of an aircraft turbofan engine. Int J Exergy, 2009, 6(3): 277-294.
  • [26] Atılgan R, Turan O, Altuntas O, Aydın H, Synylo K. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy, 2013, 58: 664-671.
  • [27] Altuntas O, Karakoc TH, Hepbasli A. Exergoenvironmental analysis of pistonprop aircrafts. Int J Exergy, 2012,10(3): 290-298.
  • [28] Aydın H, Turan O, Karakoc TH, Midilli A. Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy 2013; 58: 550-560.
  • [29] Roketsan. SOM Stand off Missile. http://www.roketsan.com.tr/wp-content/uploads/2015/06/SOM-ENG-email1.pdf
  • [30] SavunmaSanayi.Org. SOM SeyirFüzesi (in Turkish). http://www.savunma-sanayi.com/2016/01/som-seyir-fuzesi.html
  • [31] ASMC-1st Air Supply and Maintenance Center. Technical Document of Turbojet Engine. 2013.
  • [32] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 8th Edition, McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121.ISBN-978-0-07-339817-4. 2014.
  • [33] Jawad H, Jaber MY, Bonney M, Rosen MA. Deriving an exergetic economic production quantity model for better sustainability.Applied Mathematical Modelling, 2016, 40: 6026–6039.
  • [34] Sohret Y, Ekici S, Altuntas O, Hepbasli A, Karakoc TH. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 2016, 83:57–69.
  • [35] Balli O. Advanced exergy analysis of a turbofan engine (TFE): Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. International Journal of Turbo&Jet Engines. 2017. ISSN (Online) 2191-0332, ISSN (Print) 0334-0082. DOI:https://doi.org/10.1515/tjj-2016-0074.
  • [36] Balli O. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 2017, 124: 599-612.
  • [37] Balli O. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering, 2017, 111:152-169.
  • [38] Kotas, T.J. The Exergy Method of Thermal Plant Analysis, Reprint ed.,Kieger, Malabar.1995.
  • [39] Tsatsaronis G, Morosuk T, Koch D, Sorgenfrei M. Understanding the thermodynamic inefficiencies in combustion processes. Energy, 2013, 62: 3-11.
  • [40] Karimi MN, Kamboj SK. Exergy destruction and chemical irreversibilities during combustion in spark-ignition engine using oxygenated and hydrocarbon fuels. International Journal of Mechanical and Industrial Engineering (IJMIE), 2012, 2(3): 7-11.
  • [41] Balli O. Exergy modeling for evaluating sustainability level of a high by-passturbofan engine used on commercial aircrafts.Applied Thermal Engineering, 2017, 123:138-155.
  • [42] Sohret Y, Sogut MZ, Karakoc TH, Turan O. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation. Int J Exergy, 2016, 20(1): 48-65.
  • [43] Bastani M, Mokhtari H, Mostafavi Sani M. Bypass rate impact on turbofan engine parameters using energy and exergy analysis. Int J of Engineering Sciencies&Research Technologies, 2015, 4(4): 387-395.
  • [44] Ekici S, Sohret Y, Coban K, Karakoc TH. Sustainability metrics of a small scale turbojet engine.International Journal of Turbo&Jet Engines. 2017.https://doi.org/10.1515/tjj-2016-0036
  • [45] Struchtrup H, Elfring GJ. External losses in high-bypas turbofan air engines.Int J Exergy, 2008, 5: 400-412.
  • [46] Balli O. Sustainable aviation metrics for an aircraft gas turbine engine from thermodynamics perspective. International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [47] Balli O, Adak I, Gunes S. Afterburner effect on the energetic and exergetic performance of J79-GE-17 engine with afterburner system used on F-4 Phantom II Aircrafts. International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [48]Balli O, SohretY, Karakoc TH. Exergy analysis of a new designed medium-scale turboprop engine used on unmanned aircraft vehicles (UAVs). International Symposium on Sustainable Aviation (ISSA-2017), 10-13 September 2017, Kiev, Ukraine.
  • [49] Balli O. Analyzing performance of an experimental micro turbojet engine with advanced exergy methodology. 2st International Mediterranean Science and Engineering Congress (IMSEC-2017), 25-27 October 2017, Cukurova University Congress Center, Adana, Turkey.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makale
Yazarlar

Özgür Balli

Yayımlanma Tarihi 30 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 35 Sayı: 1

Kaynak Göster

APA Balli, Ö. (2019). Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 35(1), 13-32.
AMA Balli Ö. Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Nisan 2019;35(1):13-32.
Chicago Balli, Özgür. “Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) With Exergy Analysis Methodology”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35, sy. 1 (Nisan 2019): 13-32.
EndNote Balli Ö (01 Nisan 2019) Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35 1 13–32.
IEEE Ö. Balli, “Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 35, sy. 1, ss. 13–32, 2019.
ISNAD Balli, Özgür. “Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) With Exergy Analysis Methodology”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35/1 (Nisan 2019), 13-32.
JAMA Balli Ö. Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2019;35:13–32.
MLA Balli, Özgür. “Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) With Exergy Analysis Methodology”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 35, sy. 1, 2019, ss. 13-32.
Vancouver Balli Ö. Maximum Operation Performance Evaluation of a Turbojet Engine Designed for Missiles and Unmanned Aerial Vehicles (UAV) with Exergy Analysis Methodology. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2019;35(1):13-32.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.