Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi

Yıl 2022, Cilt: 38 Sayı: 2, 250 - 260, 23.08.2022

Öz

Bu çalışmada Cu atomlarının farklı kristalografik doğrultulara yerleştirilmesiyle oluşturulan nano tellere tek eksen boyunca uygulanan çekme yüklenmesi-yükün kaldırılması çevrimlerinin model sistemin mekanik özellikleri üzerindeki etkisi Moleküler Dinamik (MD) benzetim yöntemi ile incelendi. Çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) potansiyel fonksiyonunun türevinden atomlar üzerine etki eden kuvvetler belirlendi. 1x1010s-1 zorlanma değeri için 10 K ve 300 K sıcaklıklarında nano tellere üç çekme yüklenmesi-yükün kaldırılması deformasyonu uygulanarak zor-zorlanma eğrileri, elastiklik modülü (E), akma zoru değerleri incelendi. Uygulanan çevrim işlemleri sonucu elde edilen atomik görüntüler ve genel komşu analiz metodu (Common Neighbor Analysis-CNA) kullanılarak nano tellerde meydana gelen plastik deformasyonun, bütün yönelimler için dislokasyonların aktif hale geçmesi, yığılım kusurları ve ikizlenmeler sonucu meydana geldiği tespit edildi. Bununla birlikte yüklenmenin kaldırılması durumunda bütün yönelimler için nano telin ilk şekline tamamen dönmediği belirlendi. Ayrıca <110> Cu nano teli için üçüncü çevrimde kopma meydana geldiği görüldü. Uygulanan çevrim işleminin nano telin farklı kristal yönelimleri için mekanik özellikler üzerinde önemli bir etkiye sahip olduğu tespit edildi.

Kaynakça

  • [1] Pasquier, A., Unalan, H. E., Kanwal, A., Miller, S., Chhowalla, M. 2005. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett., 87, 203511.
  • [2] Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G. 2004. Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diode. Nano Letters, 4, 911-914.
  • [3] Li, J., Hu, L., Wang, L., Zhou, Y., Gruner, G., Marks, T. J. 2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett., 6, 2472-2477.
  • [4] Diao, J., Gall, K., Dunn, M.L. 2003. Surface-stress-induced phase transformation in metal nanowires. Nature Materials, 2, 656-660.
  • [5] Lao, J., Moldovan, D. 2008. Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Appl. Phys. Lett., 93, 093108.
  • [6] Zheng, H., Cao, A., Weinberger, C.R., Huang J.Y., Du, K., Wang, J., Ma, Y., Xia, Y., Mao., S.X. 2010. Discrete plasticity in sub-10-nm-sized gold crystals Nature. Communications, 1, 144.
  • [7] Liang, W., Zhou, M. 2005. Shape Memory Effect in Cu Nanowires. Nano Letters, 5, 2039-2043.
  • [8] Liang, W., Zhou, M. 2006. Atomistic simulations reveal shape memory of fcc metal nanowires. Physical. Review B, 73, 115409.
  • [9] Park, H.S., Gall, K., Zimmerman, J.A. 2005. Shape Memory and Pseudoelasticity in Metal Nanowires. Physical Review Letters, 95, 255504.
  • [10] Park, H.S., Ji, C. 2006. On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54, 2645-2654.
  • [11] Diao, J., Gall, K., Dunn, M.L. 2004. Yield Strength Asymmetry in Metal Nanowires. Nano Letters, 4, 1863-1867.
  • [12] Park, H.S., Zimmerman, J.A. 2005. Modeling inelasticity and failure in gold nanowires, Physical Review B,72, 054106.
  • [13] Park, H.S., Gall, K., Zimmerman, J.A. 2006. Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids, 54, 1862-1881.
  • [14] Wu, H.A. 2006. Molecular dynamics study of the mechanics of metal nanowires at finite temperature. Euro. J. Mech. A Solids, 25, 370-377.
  • [15] Wu, H.A. 2006. Molecular dynamics study on mechanics of metal nanowire. Mech. Res. Commun., 33, 9-16.
  • [16] Komandori, R., Chadrasekaran, N., Raff, L.M. 2003. Molecular Dynamics Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for MEMS Applications. Mater. Sci. Eng. A, 340, 58-67.
  • [17] Komandori, R., Chadrasekaran, N., Raff, L.M. 2001. Molecular Dynamics (MD) Simulations of Uniaxial Tension of Some Single Crystal Cubic Metals at Nanolevel. Int. J. Mech. Sci. 43, 2237-2260.
  • [18] Gao, Y., Wang, H., Zhao, J., Sun, C., Wang, F. 2011. Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Computational Materials Science, 50, 3032-3037.
  • [19] Sainath, G., Choudhary, B.K. 2016. Orientation dependent deformation behaviour of bcc iron nanowires. Computational Materials Science, 111, 406-415.
  • [20] Jani, J.M., Leary, M., Subic, A., Gibson, M.A. 2014. A review of shape memory alloy research, applications and opportunities. Materials Design, 56, 1078-1113.
  • [21] Lobo, P.S., Almeida, J., Guerreiro, L. 2015. Shape memory alloys behaviour: a review. Procedia Eng., 114, 776-783.
  • [22] Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C. 2012. Stimulus responsive shape memory materials: a review. Materials Design, 33, 577-640.
  • [23] Pathak, A., Chatterjee, R., Prakash, C. 2010. Improvement in shape memory in magnesium niobate modified PZST. Ceram. Int., 36, 2263-2267.
  • [24] Deng, C., Sansoz, F. 2016. A new form of pseudo-elasticity in small-scale nanotwinned gold. Extreme Mech. Lett., 8, 201-207.
  • [25] Seo, J.H., Park, H.S., Yoo, Y., Seong, T.Y., Li, J., Ahn, J.P., Kim, B., Choi, I.S. 2013. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Letters, 13, 5112-5116.
  • [26] Cao, A. 2010. Shape memory effects and pseudoelasticity in BCC metallic nanowires. J. Appl. Phys., 108, 113531.
  • [27] Rezaei, R., Deng, C. 2017. Pseudoelasticity and shape memory effects in cylindrical fcc metal nanowires. Acta Materialia, 132, 49-56.
  • [28] Jing, Y., Meng, Q., Zhao, W. 2009. Molcular Dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41, 685-689.
  • [29] Katakam, K. C., Yedla, N. 2021. Influence of orientation and temperature on the mechanical properties and deformation behavior of nickel nanowire under bending: A large scale molecular dynamics simulation. Materials Today: Proceedings, 39, 1727-1732.
  • [30] Jelinek, P., Perez, R., Ortega, J., Flores, F. 2003. First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Phys.Rev. B., 68, 085403.
  • [31] Cai, J., Ye, Y.Y. 1996. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B, 54, 8398.
  • [32] Tolpin, K.A., Bachurin, V.I., Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys. Res. B, 273, 76-79.
  • [33] Hong, Z.H., Fang, T.H., Hwang,S.F. 2011. Phase transformation of stress-induced zinc oxide nanobelts using molecular dynamics. Computational Materials Science, 50, 1944-1950.
  • [34] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • [35] Stukowski, A. 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • [36] Kazanc, S. 2013. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Can. J. Phys., 91 (10), 833-838.
  • [37] Kazanc, S., Ozgen, S., Adiguzel, O. 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334(3-4), 375-381.
  • [38] Foiles, S.M., Baskes, M.I., Daw, M.S. 1986, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 33, 7983.
  • [39] Malins, A., Williams, S.R., Eggers, J., Royall, C.P. 2013. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • [40] Stukowski, A. 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • [41] Setoodeh, A.R., Attariani, H., Khosrownejad, M. 2008. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Computational Materials Science, 44, 378-384.
  • [42] Wu, H.A. 2006, Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • [43] Guder, V., Sengul, S. 2020. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate. Computational Materials Science, 177, 109551.
  • [44] Wen, Y.H., Zhang, Y., Wang, Q., Zheng J.C., Zhu, Z.Z. 2010. Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science, 48, 513-519.

Investigation by molecular dynamic simulation of mechanical cycle applied to Cu nanowires with different crystal orientations

Yıl 2022, Cilt: 38 Sayı: 2, 250 - 260, 23.08.2022

Öz

In this study, the effect of uniaxial tensile loading-unloading cycles applied to nanowires formed by placing Cu atoms in different crystallographic directions on the mechanical properties of the model system was investigated by Molecular Dynamics (MD) simulation method. The forces effecting on atoms were determined from the derivative of the Embedded Atom Method (EAM) potential function, which includes many-body interactions. For the 1x1010s-1 strain value, the stress-strain curves, modulus of elasticity (E), yield stress values were examined by applying three tensile loading-unloading deformations to the nanowires at temperatures of 10 K and 300 K. By using the atomic images obtained as a result of the applied cycle processes and the common neighbor analysis method (CNA), it was determined that the plastic deformation in the nanowires occurred as a result of activation of dislocations, stacking defects and twinning for all orientations. However, it was determined that the nanowire did not fully return to its original shape for all orientations when the loading was removed. In addition, it was observed that break up occurred in the third cycle for <110> Cu nanowire. It was found that the applied cycling process had a significant effect on the mechanical properties for different crystal orientations of the nanowires.

Kaynakça

  • [1] Pasquier, A., Unalan, H. E., Kanwal, A., Miller, S., Chhowalla, M. 2005. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett., 87, 203511.
  • [2] Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G. 2004. Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diode. Nano Letters, 4, 911-914.
  • [3] Li, J., Hu, L., Wang, L., Zhou, Y., Gruner, G., Marks, T. J. 2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett., 6, 2472-2477.
  • [4] Diao, J., Gall, K., Dunn, M.L. 2003. Surface-stress-induced phase transformation in metal nanowires. Nature Materials, 2, 656-660.
  • [5] Lao, J., Moldovan, D. 2008. Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires. Appl. Phys. Lett., 93, 093108.
  • [6] Zheng, H., Cao, A., Weinberger, C.R., Huang J.Y., Du, K., Wang, J., Ma, Y., Xia, Y., Mao., S.X. 2010. Discrete plasticity in sub-10-nm-sized gold crystals Nature. Communications, 1, 144.
  • [7] Liang, W., Zhou, M. 2005. Shape Memory Effect in Cu Nanowires. Nano Letters, 5, 2039-2043.
  • [8] Liang, W., Zhou, M. 2006. Atomistic simulations reveal shape memory of fcc metal nanowires. Physical. Review B, 73, 115409.
  • [9] Park, H.S., Gall, K., Zimmerman, J.A. 2005. Shape Memory and Pseudoelasticity in Metal Nanowires. Physical Review Letters, 95, 255504.
  • [10] Park, H.S., Ji, C. 2006. On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54, 2645-2654.
  • [11] Diao, J., Gall, K., Dunn, M.L. 2004. Yield Strength Asymmetry in Metal Nanowires. Nano Letters, 4, 1863-1867.
  • [12] Park, H.S., Zimmerman, J.A. 2005. Modeling inelasticity and failure in gold nanowires, Physical Review B,72, 054106.
  • [13] Park, H.S., Gall, K., Zimmerman, J.A. 2006. Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids, 54, 1862-1881.
  • [14] Wu, H.A. 2006. Molecular dynamics study of the mechanics of metal nanowires at finite temperature. Euro. J. Mech. A Solids, 25, 370-377.
  • [15] Wu, H.A. 2006. Molecular dynamics study on mechanics of metal nanowire. Mech. Res. Commun., 33, 9-16.
  • [16] Komandori, R., Chadrasekaran, N., Raff, L.M. 2003. Molecular Dynamics Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for MEMS Applications. Mater. Sci. Eng. A, 340, 58-67.
  • [17] Komandori, R., Chadrasekaran, N., Raff, L.M. 2001. Molecular Dynamics (MD) Simulations of Uniaxial Tension of Some Single Crystal Cubic Metals at Nanolevel. Int. J. Mech. Sci. 43, 2237-2260.
  • [18] Gao, Y., Wang, H., Zhao, J., Sun, C., Wang, F. 2011. Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Computational Materials Science, 50, 3032-3037.
  • [19] Sainath, G., Choudhary, B.K. 2016. Orientation dependent deformation behaviour of bcc iron nanowires. Computational Materials Science, 111, 406-415.
  • [20] Jani, J.M., Leary, M., Subic, A., Gibson, M.A. 2014. A review of shape memory alloy research, applications and opportunities. Materials Design, 56, 1078-1113.
  • [21] Lobo, P.S., Almeida, J., Guerreiro, L. 2015. Shape memory alloys behaviour: a review. Procedia Eng., 114, 776-783.
  • [22] Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C. 2012. Stimulus responsive shape memory materials: a review. Materials Design, 33, 577-640.
  • [23] Pathak, A., Chatterjee, R., Prakash, C. 2010. Improvement in shape memory in magnesium niobate modified PZST. Ceram. Int., 36, 2263-2267.
  • [24] Deng, C., Sansoz, F. 2016. A new form of pseudo-elasticity in small-scale nanotwinned gold. Extreme Mech. Lett., 8, 201-207.
  • [25] Seo, J.H., Park, H.S., Yoo, Y., Seong, T.Y., Li, J., Ahn, J.P., Kim, B., Choi, I.S. 2013. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Letters, 13, 5112-5116.
  • [26] Cao, A. 2010. Shape memory effects and pseudoelasticity in BCC metallic nanowires. J. Appl. Phys., 108, 113531.
  • [27] Rezaei, R., Deng, C. 2017. Pseudoelasticity and shape memory effects in cylindrical fcc metal nanowires. Acta Materialia, 132, 49-56.
  • [28] Jing, Y., Meng, Q., Zhao, W. 2009. Molcular Dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E, 41, 685-689.
  • [29] Katakam, K. C., Yedla, N. 2021. Influence of orientation and temperature on the mechanical properties and deformation behavior of nickel nanowire under bending: A large scale molecular dynamics simulation. Materials Today: Proceedings, 39, 1727-1732.
  • [30] Jelinek, P., Perez, R., Ortega, J., Flores, F. 2003. First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Phys.Rev. B., 68, 085403.
  • [31] Cai, J., Ye, Y.Y. 1996. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B, 54, 8398.
  • [32] Tolpin, K.A., Bachurin, V.I., Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys. Res. B, 273, 76-79.
  • [33] Hong, Z.H., Fang, T.H., Hwang,S.F. 2011. Phase transformation of stress-induced zinc oxide nanobelts using molecular dynamics. Computational Materials Science, 50, 1944-1950.
  • [34] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • [35] Stukowski, A. 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • [36] Kazanc, S. 2013. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Can. J. Phys., 91 (10), 833-838.
  • [37] Kazanc, S., Ozgen, S., Adiguzel, O. 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334(3-4), 375-381.
  • [38] Foiles, S.M., Baskes, M.I., Daw, M.S. 1986, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 33, 7983.
  • [39] Malins, A., Williams, S.R., Eggers, J., Royall, C.P. 2013. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • [40] Stukowski, A. 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • [41] Setoodeh, A.R., Attariani, H., Khosrownejad, M. 2008. Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Computational Materials Science, 44, 378-384.
  • [42] Wu, H.A. 2006, Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • [43] Guder, V., Sengul, S. 2020. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate. Computational Materials Science, 177, 109551.
  • [44] Wen, Y.H., Zhang, Y., Wang, Q., Zheng J.C., Zhu, Z.Z. 2010. Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science, 48, 513-519.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Erken Görünüm Tarihi 23 Ağustos 2022
Yayımlanma Tarihi 23 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 38 Sayı: 2

Kaynak Göster

APA Kazanç, S. (2022). Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 250-260.
AMA Kazanç S. Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2022;38(2):250-260.
Chicago Kazanç, Sefa. “Farklı Kristal yönelimine Sahip Cu Nano Tellerine Uygulanan Mekanik çevrimin moleküler Dinamik Benzetimi Ile Incelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38, sy. 2 (Ağustos 2022): 250-60.
EndNote Kazanç S (01 Ağustos 2022) Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38 2 250–260.
IEEE S. Kazanç, “Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, ss. 250–260, 2022.
ISNAD Kazanç, Sefa. “Farklı Kristal yönelimine Sahip Cu Nano Tellerine Uygulanan Mekanik çevrimin moleküler Dinamik Benzetimi Ile Incelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38/2 (Ağustos 2022), 250-260.
JAMA Kazanç S. Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38:250–260.
MLA Kazanç, Sefa. “Farklı Kristal yönelimine Sahip Cu Nano Tellerine Uygulanan Mekanik çevrimin moleküler Dinamik Benzetimi Ile Incelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 38, sy. 2, 2022, ss. 250-6.
Vancouver Kazanç S. Farklı kristal yönelimine sahip Cu nano tellerine uygulanan mekanik çevrimin moleküler dinamik benzetimi ile incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38(2):250-6.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.