Araştırma Makalesi
BibTex RIS Kaynak Göster

SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması

Yıl 2023, Cilt: 39 Sayı: 2, 204 - 216, 31.08.2023

Öz

Standart Penetrasyon Testi (SPT) ve Koni Penetrasyon Testi (CPT) zemin araştırmalarında en sık kullanılan yöntemler arasında yer almaktadır. Birçok zemin parametresi SPT ve/veya CPT ile ilişkilendirilmiştir. Bu testlerden herhangi birinin yokluğunda bir diğerinin kullanılabilmesi için SPT-CPT arasında güvenilir bir korelasyonun elde edilmesi önem arz etmektedir. Bu çalışmada literatürden yararlanılarak çeşitli zemin tipleri için SPT-N verilerine karşılık gelen CPT ile elde edilmiş uç direnci (qc) değerlerine ulaşılmıştır. SPT-N değerleri ile uç direnci (qc) verileri arasında anlamlı bir ilişkinin olup olmadığını belirlemek için varyans analizi gerçekleştirilmiştir. SPT-CPT korelasyonu için yapay sinir ağları ile simüle edilebilir ağlar oluşturularak her zemin tipi için yüksek dereceli korelasyon değerlerine sahip ayrı fonksiyonlar elde edilmiştir. Ulaşılan sonuçlar deneysel verilerle ve literatürdeki denklemlerle karşılaştırılmıştır. Böylece farklı zemin tipleri için yapay zeka desteğiyle oluşturulmuş iyi derecede korelasyon değerlerine sahip fonksiyonların yardımıyla SPT ile elde edilen sonuçların CPT ile anlamlı olarak ilişkilendirilmesine olanak sağlanmıştır. Farklı bölgelere ait çok sayıda verinin kullanılması durumunda yapay sinir ağları ile SPT-CPT korelasyonu oluşturmanın başarılı bir yöntem olacağı sonucuna varılmıştır.

Kaynakça

  • [1] Hettiarachchi, H., & Brown, T. (2009). Use of SPT blow counts to estimate shear strength properties of soils: energy balance approach. Journal of Geotechnical and Geoenvironmental engineering, 135(6), 830-834.
  • [2] Zhou, H., Wotherspoon, L. M., Hayden, C. P., Stolte, A. C., & McGann, C. R. (2023). Applicability of existing CPT-Vs correlations to shallow Holocene Christchurch soils based on direct Push crosshole testing. Engineering Geology, 313, 106927.
  • [3] Anagnostopoulos, A., Koukis, G., Sabatakakis, N., & Tsiambaos, G. (2003). Empirical correlations of soil parameters based on cone penetration tests (CPT) for Greek soils. Geotechnical & geological engineering, 21, 377-387.
  • [4] Jianguo, C. H. E. N. G. (2012). Correlation Analysis of SPT N Values and Cohesion and International Angle of a Clay. Soil Engineering and Foundation, 26(4), 91.
  • [5] Lu, Y. C., Liu, L. W., Khoshnevisan, S., Ku, C. S., Juang, C. H., & Xiao, S. H. (2022). A new approach to constructing SPT-CPT correlation for sandy soils. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-17.
  • [6] Kumar, R., Bhargava, K., & Choudhury, D. (2016). Estimation of engineering properties of soils from field SPT using random number generation. INAE Letters, 1(3), 77-84.
  • [7] Ekmen, A. B. (2023). Evaluation of SPT-N values and internal friction angle correlation using artificial intelligence methods in granular soils. Soil Research.
  • [8] Cubrinovski, M., & Ishihara, K. (1999). Empirical correlation between SPT N-value and relative density for sandy soils. Soils and Foundations, 39(5), 61-71.
  • [9] S Dalai, S., & Patra, C. (2021). Prediction of Angle of Internal Friction Based on SPT N Values. In Proceedings of the Indian Geotechnical Conference 2019 (pp. 471-477). Springer, Singapore.
  • [10] Hatta, K. A., & Syed Osman, S. B. A. (2015). Correlation of electrical resistivity and SPT-N value from standard penetration test (SPT) of sandy soil. In Applied Mechanics and Materials (Vol. 785, pp. 702-706). Trans Tech Publications Ltd.
  • [11] Poor, M. M., Azarafza, M., & Derakhshani, R. (2023). A correlation based on pressuremeter, SPT and CPT tests for characterizing of coastal alluvium: A study for phase 14 South Pars, Iran. MethodsX, 10, 101938.
  • [12] Bol, E. (2023). A new approach to the correlation of SPT-CPT depending on the soil behavior type index. Engineering Geology, 106996.
  • [13] Faivre, Y., Mirzaghorbanali, A., Nourizadeh, H., Shokri, B. J., McDougall, K., & Aziz, N. (2023). SPT-CPT correlation in Southeast Queensland, Australia.
  • [14] Robertson, P. K., Campanella, R. G., & Wightman, A. (1983). Spt-Cpt Correlations. Journal of Geotechnical Engineering, 109(11), 1449-1459.
  • [15] Chin, C. T., Duann, S. W., & Kao, T. C. (1990). SPT-CPT correlations for granular soils. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 27, No. 2, pp. A91-A91). Elsevier Science.
  • [16] Akca, N. (2003). Correlation of SPT–CPT data from the United Arab Emirates. Engineering Geology, 67(3- 4), 219-231.
  • [17] Lu, Y. C., Liu, L. W., Khoshnevisan, S., Ku, C. S., Juang, C. H., & Xiao, S. H. (2022). A new approach to constructing SPT-CPT correlation for sandy soils. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-17.
  • [18] Kruizinga, J. (2021, February). SPT–CPT correlations. In Penetration Testing (pp. 91-94). Routledge.
  • [19] Zhou, H., Wotherspoon, L. M., Hayden, C. P., McGann, C. R., Stolte, A., & Haycock, I. (2021). Assessment of Existing SPT–CPT Correlations Using a New Zealand Database. Journal of Geotechnical and Geoenvironmental Engineering, 147(11), 04021131.
  • [20] Jarushi, F., AlKaabim, S., & Cosentino, P. (2015). A new correlation between SPT and CPT for various soils. International Journal of Geological and Environmental Engineering, 9(2), 101-107.
  • [21] Park, H. I., & Lee, S. R. (2011). Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38(4), 472-481.
  • [22] Lai, J., Qiu, J., Feng, Z., Chen, J., & Fan, H. (2016). Prediction of soil deformation in tunnelling using artificial neural networks. Computational Intelligence and Neuroscience, 2016.
  • [23] Luat, N. V., Lee, K., & Thai, D. K. (2020). Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils. Geomechanics and Engineering, 20(5), 385-397.
  • [24] Amini, O., Khoshghalb, A., & Etemadifar, M. (2021). Investigation of the geotechnical properties and estimation of the relative density from the standard penetration test in sandy
  • [25] Zakharov, A., Shenkman, R., Ofrikhter, I., & Ponomaryov, A. (2022). Estimation of soil properties by an artificial neural network. Magazine of Civil Engineering, 110(2), 11011.
  • [26] Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2001). Artificial neural network applications in geotechnical engineering. Australian geomechanics, 36(1), 49-62.
  • [27] Ekmen, A. B., & Avci, Y. (2023). Artificial Intelligence-Assisted Optimization of Tunnel Support Systems Based on the Multiple Three-Dimensional Finite Element Analyses Considering the Excavation Stages. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(3), 1725-1747.
  • [28] Işık, E., Ademović, N., Harirchian, E., Avcil, F., Büyüksaraç, A., Hadzima-Nyarko, M., ... & Antep, B. (2023).
  • Determination of Natural Fundamental Period of Minarets by Using Artificial Neural Network and of the Impact of Different Materials on Their Seismic Vulnerability. Applied Sciences, 13(2), 809.
  • [29] Bülbül, M. A., Harirchian, E., Işık, M. F., Aghakouchaki Hosseini, S. E., & Işık, E. (2022). A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings. Applied Sciences, 12(10), 5138.
  • [30] Matlab, (2017). Matlab, version R2017a, MathWorks.

Investigation of SPT-CPT Relationship for Various Soil Types with Artificial Intelligence Support

Yıl 2023, Cilt: 39 Sayı: 2, 204 - 216, 31.08.2023

Öz

Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are among the most commonly used methods in soil investigations. Many soil parameters are associated with SPT and/or CPT. It is essential to obtain a reliable correlation between SPT and CPT to use one of these tests individually. In this study, the tip resistance (qc) values obtained with CPT corresponding to SPT-N data for various soil types were reached utilizing the literature. Analysis of variance was performed to ascertain whether there was a significant relationship between SPT-N values and tip resistance (qc) data. Separate functions with high-order correlation values were obtained for each soil type by creating simulatable networks with artificial neural networks for SPT-CPT correlation. The obtained results were compared with experimental data and equations in the literature. As a result, functions in good correlation values created by the support of artificial intelligence for various soil types have provided the opportunity to correlate SPT and CPT outcomes significantly. It has been concluded that using a large number of data from various locations will enable in an effective way for generating SPT-CPT correlation with artificial neural networks.

Kaynakça

  • [1] Hettiarachchi, H., & Brown, T. (2009). Use of SPT blow counts to estimate shear strength properties of soils: energy balance approach. Journal of Geotechnical and Geoenvironmental engineering, 135(6), 830-834.
  • [2] Zhou, H., Wotherspoon, L. M., Hayden, C. P., Stolte, A. C., & McGann, C. R. (2023). Applicability of existing CPT-Vs correlations to shallow Holocene Christchurch soils based on direct Push crosshole testing. Engineering Geology, 313, 106927.
  • [3] Anagnostopoulos, A., Koukis, G., Sabatakakis, N., & Tsiambaos, G. (2003). Empirical correlations of soil parameters based on cone penetration tests (CPT) for Greek soils. Geotechnical & geological engineering, 21, 377-387.
  • [4] Jianguo, C. H. E. N. G. (2012). Correlation Analysis of SPT N Values and Cohesion and International Angle of a Clay. Soil Engineering and Foundation, 26(4), 91.
  • [5] Lu, Y. C., Liu, L. W., Khoshnevisan, S., Ku, C. S., Juang, C. H., & Xiao, S. H. (2022). A new approach to constructing SPT-CPT correlation for sandy soils. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-17.
  • [6] Kumar, R., Bhargava, K., & Choudhury, D. (2016). Estimation of engineering properties of soils from field SPT using random number generation. INAE Letters, 1(3), 77-84.
  • [7] Ekmen, A. B. (2023). Evaluation of SPT-N values and internal friction angle correlation using artificial intelligence methods in granular soils. Soil Research.
  • [8] Cubrinovski, M., & Ishihara, K. (1999). Empirical correlation between SPT N-value and relative density for sandy soils. Soils and Foundations, 39(5), 61-71.
  • [9] S Dalai, S., & Patra, C. (2021). Prediction of Angle of Internal Friction Based on SPT N Values. In Proceedings of the Indian Geotechnical Conference 2019 (pp. 471-477). Springer, Singapore.
  • [10] Hatta, K. A., & Syed Osman, S. B. A. (2015). Correlation of electrical resistivity and SPT-N value from standard penetration test (SPT) of sandy soil. In Applied Mechanics and Materials (Vol. 785, pp. 702-706). Trans Tech Publications Ltd.
  • [11] Poor, M. M., Azarafza, M., & Derakhshani, R. (2023). A correlation based on pressuremeter, SPT and CPT tests for characterizing of coastal alluvium: A study for phase 14 South Pars, Iran. MethodsX, 10, 101938.
  • [12] Bol, E. (2023). A new approach to the correlation of SPT-CPT depending on the soil behavior type index. Engineering Geology, 106996.
  • [13] Faivre, Y., Mirzaghorbanali, A., Nourizadeh, H., Shokri, B. J., McDougall, K., & Aziz, N. (2023). SPT-CPT correlation in Southeast Queensland, Australia.
  • [14] Robertson, P. K., Campanella, R. G., & Wightman, A. (1983). Spt-Cpt Correlations. Journal of Geotechnical Engineering, 109(11), 1449-1459.
  • [15] Chin, C. T., Duann, S. W., & Kao, T. C. (1990). SPT-CPT correlations for granular soils. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 27, No. 2, pp. A91-A91). Elsevier Science.
  • [16] Akca, N. (2003). Correlation of SPT–CPT data from the United Arab Emirates. Engineering Geology, 67(3- 4), 219-231.
  • [17] Lu, Y. C., Liu, L. W., Khoshnevisan, S., Ku, C. S., Juang, C. H., & Xiao, S. H. (2022). A new approach to constructing SPT-CPT correlation for sandy soils. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-17.
  • [18] Kruizinga, J. (2021, February). SPT–CPT correlations. In Penetration Testing (pp. 91-94). Routledge.
  • [19] Zhou, H., Wotherspoon, L. M., Hayden, C. P., McGann, C. R., Stolte, A., & Haycock, I. (2021). Assessment of Existing SPT–CPT Correlations Using a New Zealand Database. Journal of Geotechnical and Geoenvironmental Engineering, 147(11), 04021131.
  • [20] Jarushi, F., AlKaabim, S., & Cosentino, P. (2015). A new correlation between SPT and CPT for various soils. International Journal of Geological and Environmental Engineering, 9(2), 101-107.
  • [21] Park, H. I., & Lee, S. R. (2011). Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38(4), 472-481.
  • [22] Lai, J., Qiu, J., Feng, Z., Chen, J., & Fan, H. (2016). Prediction of soil deformation in tunnelling using artificial neural networks. Computational Intelligence and Neuroscience, 2016.
  • [23] Luat, N. V., Lee, K., & Thai, D. K. (2020). Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils. Geomechanics and Engineering, 20(5), 385-397.
  • [24] Amini, O., Khoshghalb, A., & Etemadifar, M. (2021). Investigation of the geotechnical properties and estimation of the relative density from the standard penetration test in sandy
  • [25] Zakharov, A., Shenkman, R., Ofrikhter, I., & Ponomaryov, A. (2022). Estimation of soil properties by an artificial neural network. Magazine of Civil Engineering, 110(2), 11011.
  • [26] Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2001). Artificial neural network applications in geotechnical engineering. Australian geomechanics, 36(1), 49-62.
  • [27] Ekmen, A. B., & Avci, Y. (2023). Artificial Intelligence-Assisted Optimization of Tunnel Support Systems Based on the Multiple Three-Dimensional Finite Element Analyses Considering the Excavation Stages. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(3), 1725-1747.
  • [28] Işık, E., Ademović, N., Harirchian, E., Avcil, F., Büyüksaraç, A., Hadzima-Nyarko, M., ... & Antep, B. (2023).
  • Determination of Natural Fundamental Period of Minarets by Using Artificial Neural Network and of the Impact of Different Materials on Their Seismic Vulnerability. Applied Sciences, 13(2), 809.
  • [29] Bülbül, M. A., Harirchian, E., Işık, M. F., Aghakouchaki Hosseini, S. E., & Işık, E. (2022). A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings. Applied Sciences, 12(10), 5138.
  • [30] Matlab, (2017). Matlab, version R2017a, MathWorks.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Arda Burak Ekmen

Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 39 Sayı: 2

Kaynak Göster

APA Ekmen, A. B. (2023). SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(2), 204-216.
AMA Ekmen AB. SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2023;39(2):204-216.
Chicago Ekmen, Arda Burak. “SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39, sy. 2 (Ağustos 2023): 204-16.
EndNote Ekmen AB (01 Ağustos 2023) SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39 2 204–216.
IEEE A. B. Ekmen, “SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 39, sy. 2, ss. 204–216, 2023.
ISNAD Ekmen, Arda Burak. “SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39/2 (Ağustos 2023), 204-216.
JAMA Ekmen AB. SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39:204–216.
MLA Ekmen, Arda Burak. “SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 39, sy. 2, 2023, ss. 204-16.
Vancouver Ekmen AB. SPT-CPT İlişkisinin Yapay Zeka Desteğiyle Çeşitli Zemin Tipleri İçin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39(2):204-16.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.