Araştırma Makalesi
BibTex RIS Kaynak Göster

Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication

Yıl 2024, Cilt: 40 Sayı: 2, 372 - 382, 31.08.2024

Öz

Solution-processable materials attract significant interest in the development of high-efficiency, cost-effective optoelectronic devices. However, widely used high-performance materials often suffer from high toxicity, low biocompatibility, and synthesis procedures hazardous to human health and the environment. As cost-effective, sustainable alternatives to the conventional solution-processed semiconductors, here we evaluate the potential of plant extracts. Within this framework, here we present photodetectors employing the extract of Cucurbita pepo L. (pumpkin) seeds. The extracted material exhibits a strong absorption peak in the UV region (~280 nm) and a weaker absorption band between 400-450 nm. Its fluorescence spectrum covers the blue-green region of the spectrum and possesses sharp and dominant peaks at 650 nm and 730 nm. For photodetector fabrication, we drop-cast the extract acting as the active material between two electric contacts formed by treating a conductive film of silver nanowires and zinc oxide nanoparticles using a surgical blade. The resulting device demonstrates a maximum responsivity of ~1.61 mA/W at 5 V bias voltage. Being fully solution-processed, transparent photodetectors, this proof-of-concept device employing plant extracts showcases a new material system in active optoelectronic devices as sustainable, inexpensive, and easy-to-handle alternatives to their conventional counterparts.

Proje Numarası

123M876

Teşekkür

ZSE acknowledges to The Scientific and Technological Research Council of Türkiye (TUBİTAK) ARDEB 1001 Grant No:123M876. TE acknowledges the BAGEP Award from the Science Academy and the GEBIP Award from the Turkish Academy of Sciences (TÜBA).

Kaynakça

  • Proestos, C., & Varzakas, T. 2017. Aromatic Plants: Antioxidant Capacity and Polyphenol Characterisation. Foods, 6(4), 1–7.
  • Demmig-Adams, B., Gilmore, A. M., & W. W. A. Iii. 1996. Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J, 10(4), 403–412.
  • Langi, P., Kiokias, S., Varzakas, T., & Proestos, C. 2018. Carotenoids: From Plants to Food and Feed Industries. Methods in Molecular Biology, 1852, 57–71.
  • Proestos, C. 2020. The Benefits of Plant Extracts for Human Health. Foods, 9(11), 1653.
  • Croce, A. C., & Bottiroli, G. 2014. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry, 58(4), 320–337.
  • Donaldson, L. 2020. Autofluorescence in plants. Molecules, 25(10).
  • Borthakur, P. R., & Barua, A. G. 2014. Fluorescence studies of the seeds of the pumpkin (Cucurbita pepo L.). National Academy Science Letters, 37(3), 275–279.
  • Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-ŁȨtowska, A., & Kucharska, A. Z. 2013. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1–4), 155–161
  • Šamec, D., et al. 2022. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4422–4446.
  • Liu, Y., Lininger, A. S., McCaskey, L. N., & Thomas, R. M. 2023. Separation of fluorescent protochlorophyllide from green pumpkin seed using column chromatography. Journal of Chemical Education, 100(1), 312–315.
  • Barberini, L., Cadeddu, S., Giannattasio, A., & Lai, A. 2002. Gallium arsenide photodetectors for imaging in the far ultraviolet region. Applied Physics Letters.
  • Song, J., et al. 2021. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics, 10(3), 1081–1087.
  • Dou, L., et al. 2014. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5(1), 1–6.
  • Biondi, M., et al. 2021. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. Advanced Materials, 33(33), 2101056.
  • Chow, P. C. Y., Someya, T., Chow, P. C. Y., & Someya, T. 2020. Organic Photodetectors for Next-Generation Wearable Electronics. Advanced Materials, 32(15), 1902045.
  • Wu, Z., Zhai, Y., Kim, H., Azoulay, J. D., & Ng, T. N. 2018. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Accounts of Chemical Research, 51(12), 3144–3153.
  • Savas, M., Yazici, A. F., Arslan, A., Mutlugün, E., & Erdem, T. 2023. Toward sustainable optoelectronics: solution-processed quantum dot photodetector fabrication using a surgical blade. Optics Express, 62(2), 027102.
  • Savas, M., Yazici, A. F., Arslan, A., Mutlugün, E., & Erdem, T. 2022. Simple, sustainable fabrication of fully solution-processed, transparent, metal-semiconductor-metal photodetectors using a surgical blade as an alternative to conventional tools. Proceedings of SPIE, 12131, 181–193.
  • Das, N., Karar, A., Vasiliev, M., Tan, C. L., Alameh, K., & Lee, Y. T. 2011. Analysis of nano-grating-assisted light absorption enhancement in metal–semiconductor–metal photodetectors patterned using focused ion-beam lithography. Optics Communications, 284(6), 1694–1700.
  • Qin, L., Shing, C., & Sawyer, S. 2011. Metal semiconductor metal ultraviolet photodetectors based on zinc- oxide colloidal nanoparticles. IEEE Electron Device Letters, 32(1), 51–53.
  • Chou, S. Y. 1999. Nanoscale GaAs metal-semiconductor-metal photodetectors fabricated using nanoimprint lithography. Applied Physics Letters.
  • Kim, T., Canlier, A., Kim, G. H., Choi, J., Park, M., & Han, S. M. 2013. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Applied Materials & Interfaces, 5(3), 788–794.
  • Jin, X., et al. 2018. Bright alloy type-II quantum dots and their application to light-emitting diodes. Journal of Colloid and Interface Science, 510, 376–383.
  • Alexandrov, A., [et al.]. 2020. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Scientific Reports, 10(1), 1–11.
  • Berezin, K. V., & Nechaev, V. V. 2005. Calculation of the IR spectrum and the molecular structure of β- carotene. Journal of Applied Spectroscopy, 72(2), 164–171.
  • Schlücker, S., Szeghalmi, A., Schmitt, M., Popp, J., & Kiefer, W. 2003. Density functional and vibrational spectroscopic analysis of β-carotene. Journal of Raman Spectroscopy, 34(6), 413–419.
  • Ghorbani, M. M., & Taherian, R. 2018. Methods of measuring electrical properties of material. In Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications, 365–394.
  • Meenakshi, P., Karthick, R., Selvaraj, M., & Ramu, S. 2014. Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Solar Energy Materials and Solar Cells, 128, 264–269.
  • Tang, Y., et al. 2018. Low-temperature solution processed flexible silver nanowires/ZnO composite electrode with enhanced performance and stability. Journal of Alloys and Compounds, 747, 659–665.
  • Khorsand Zak, A., Razali, R., Abd Majid, W. H., & Darroudi, M. 2011. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 6(1), 1399–1403.
  • Singh, D. K., Pandey, D. K., Yadav, R. R., & Singh, D. 2012. A study of nanosized zinc oxide and its nanofluid. Pramana - Journal of Physics, 78(5), 759–766.
  • Aldalbahi, A., et al. 2020. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules, 25(18).
  • Alam, F., & Balani, K. 2017. Role of silver/zinc oxide in affecting de-adhesion strength of Staphylococcus aureus on polymer biocomposites. Materials Science and Engineering C: Materials for Biological Applications, 75, 1106–1114.
  • Zhang, J., Chia, A. C. E., & Lapierre, R. R. 2014. Low resistance indium tin oxide contact to n-GaAs nanowires. Semiconductor Science and Technology, 29(5), 054002.
  • Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13.
  • Kang, S. W., Lee, H. J., Cho, S. H., Cheong, W. S., Lee, G. H., & Song, P. K. 2012. Effects of Sn concentration on ultrathin ITO films deposited using DC magnetron sputtering. Journal of Nanoelectronics and Optoelectronics, 7(5), 494–497.
  • Kitova, S., Mankov, V., Dimov,D., Strijkova, V., Malinowski,N. 2021.High quality ITO thin films for application as conductive transparent electrodes." Bulgarian Chemical Communications 48, 196-201.
  • Hussain, S. Q., et al. 2014. RF magnetron sputtered ITO:Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells. Metals and Materials International, 20(3), 565–569.
  • Mazur, M., Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Song, S., & Placido, F. 2010. Influence of thickness on transparency and sheet resistance of ITO thin films. In The Eighth International Conference on Advanced Semiconductor Devices and Microsystems, 65–68.
  • Xu, K., Zhou, W., Ning, Z., Xu, K., Zhou, W., & Ning, Z. 2020. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small, 16(47), 2003397.
  • Hui, R., & O’Sullivan, M. 2009. Fiber Optic Measurement Techniques. Fiber Optic Measurement Techniques.
  • Pu, K., et al. 2023. A flexible sensitive visible-NIR organic photodetector with high durability. Advanced Materials Technologies, 8(16), 2300207.
  • Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A., & Hirsch, L. 2016. Long-term stable organic photodetectors with ultra-low dark currents for high detectivity applications. Scientific Reports, 6(1), 1–11.
  • Dang, Q., et al. 2023. Enhanced gain in organic photodetectors using the polymer with singlet open-shell ground state. Angewandte Chemie, e202312538.
  • Liu, Q., et al. 2019. Hybrid Graphene/Cu2O Quantum Dot Photodetectors with Ultrahigh Responsivity. Advanced Optical Materials, 7(20), 1900455.
  • Wu, X., Zhao, B., Zhang, J., Xu, H., Xu, K., & Chen, G. 2019. Photoluminescence and Photodetecting Properties of the Hydrothermally Synthesized Nitrogen-Doped Carbon Quantum Dots. Journal of Physical Chemistry C, 123(42), 25570–25578.
  • Kwak, D. H., Ramasamy, P., Lee, Y. S., Jeong, M. H., Lee, J. S. 2019. High-Performance Hybrid InP QDs/Black Phosphorus Photodetector. ACS Appl. Mater. Interfaces, 11(32), 29041-29046.
  • Ren, H., Chen, J. D., Li, Y. Q., Tang, J. X. 2021. Recent Progress in Organic Photodetectors and their Applications. Advanced Science, 8(1).
  • Hu, L., [et al.]. 2014. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon N Y, 67, 508–513.
  • Nasilowski, M., [et al.]. 2015. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield. Nano Lett, 15(6), 3953–3958.

Kolay, Ucuz, Tamamen Çözeltiyle İşlenmiş ve Şeffaf Fotodetektör Üretimi için Cucurbita Pepo L. Tohumlarının Yarı İletken Bitki Özütleri

Yıl 2024, Cilt: 40 Sayı: 2, 372 - 382, 31.08.2024

Öz

Öz: Çözeltide işlenebilen malzemeler, yüksek verimli ve uygun maliyetli optoelektronik cihazların geliştirilmesinde büyük ilgi görmektedir. Bununla birlikte, yaygın olarak kullanılan yüksek performanslı malzemeler sıklıkla yüksek toksisiteye, düşük biyouyumluluğa ve insan sağlığına ve çevreye zararlı sentez prosedürlerine sahiptir. Geleneksel, çözeltiyle işlenmiş yarı iletkenlere uygun maliyetli ve sürdürülebilir alternatifler olarak, sunulan çalışmada bitki ekstraktlarının potansiyeli araştırılmaktadır. Bu çerçevede, burada Cucurbita pepo L. (balkabağı) çekirdeği ekstraktı içeren fotodetektörler sunulmaktadır. Balkabağı çekirdeğinden elde edilen özütümüz, UV bölgesinde (~280 nm) güçlü bir abzorbans gösterirken, 400-450 nm arasında daha zayıf bir abzorbans bandına sahiptir. Özütün floresans spektrumu incelendiğinde, ışımanın mavi-yeşil spektrum bölgesinde özellikle de 650 nm ve 730 nm'de keskin ve baskın tepe noktalarına sahip olduğu görülmektedir. Fotodedektör üretimi için, gümüş nanotellerden ve çinko oksit nanopartiküllerinden oluşan iletken bir filmin cerrahi bir bıçak kullanılarak işlenmesiyle iki elektrik kontağı oluşturulmuş, daha sonra bu iki kontak arasına aktif malzeme görevi gören ekstrakt damlatılmıştır. Ortaya çıkan cihaz, 5 V öngerilim voltajında ~1,61 mA/W'lik maksimum yanıt vermiştir. Bu çalışmada üretmiş olduğumuz tamamen çözeltiyle işlenmiş, şeffaf ve bitki özü içeren konsept ispatı fotodetektör cihazı, aktif optoelektronik cihazlarda geleneksel muadillerine göre sürdürülebilir, ucuz ve kullanımı kolay alternatif yeni bir malzeme sistemi olarak gelecek çalışmalara ışık tutacaktır.

Proje Numarası

123M876

Kaynakça

  • Proestos, C., & Varzakas, T. 2017. Aromatic Plants: Antioxidant Capacity and Polyphenol Characterisation. Foods, 6(4), 1–7.
  • Demmig-Adams, B., Gilmore, A. M., & W. W. A. Iii. 1996. Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J, 10(4), 403–412.
  • Langi, P., Kiokias, S., Varzakas, T., & Proestos, C. 2018. Carotenoids: From Plants to Food and Feed Industries. Methods in Molecular Biology, 1852, 57–71.
  • Proestos, C. 2020. The Benefits of Plant Extracts for Human Health. Foods, 9(11), 1653.
  • Croce, A. C., & Bottiroli, G. 2014. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry, 58(4), 320–337.
  • Donaldson, L. 2020. Autofluorescence in plants. Molecules, 25(10).
  • Borthakur, P. R., & Barua, A. G. 2014. Fluorescence studies of the seeds of the pumpkin (Cucurbita pepo L.). National Academy Science Letters, 37(3), 275–279.
  • Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-ŁȨtowska, A., & Kucharska, A. Z. 2013. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1–4), 155–161
  • Šamec, D., et al. 2022. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4422–4446.
  • Liu, Y., Lininger, A. S., McCaskey, L. N., & Thomas, R. M. 2023. Separation of fluorescent protochlorophyllide from green pumpkin seed using column chromatography. Journal of Chemical Education, 100(1), 312–315.
  • Barberini, L., Cadeddu, S., Giannattasio, A., & Lai, A. 2002. Gallium arsenide photodetectors for imaging in the far ultraviolet region. Applied Physics Letters.
  • Song, J., et al. 2021. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics, 10(3), 1081–1087.
  • Dou, L., et al. 2014. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5(1), 1–6.
  • Biondi, M., et al. 2021. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. Advanced Materials, 33(33), 2101056.
  • Chow, P. C. Y., Someya, T., Chow, P. C. Y., & Someya, T. 2020. Organic Photodetectors for Next-Generation Wearable Electronics. Advanced Materials, 32(15), 1902045.
  • Wu, Z., Zhai, Y., Kim, H., Azoulay, J. D., & Ng, T. N. 2018. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Accounts of Chemical Research, 51(12), 3144–3153.
  • Savas, M., Yazici, A. F., Arslan, A., Mutlugün, E., & Erdem, T. 2023. Toward sustainable optoelectronics: solution-processed quantum dot photodetector fabrication using a surgical blade. Optics Express, 62(2), 027102.
  • Savas, M., Yazici, A. F., Arslan, A., Mutlugün, E., & Erdem, T. 2022. Simple, sustainable fabrication of fully solution-processed, transparent, metal-semiconductor-metal photodetectors using a surgical blade as an alternative to conventional tools. Proceedings of SPIE, 12131, 181–193.
  • Das, N., Karar, A., Vasiliev, M., Tan, C. L., Alameh, K., & Lee, Y. T. 2011. Analysis of nano-grating-assisted light absorption enhancement in metal–semiconductor–metal photodetectors patterned using focused ion-beam lithography. Optics Communications, 284(6), 1694–1700.
  • Qin, L., Shing, C., & Sawyer, S. 2011. Metal semiconductor metal ultraviolet photodetectors based on zinc- oxide colloidal nanoparticles. IEEE Electron Device Letters, 32(1), 51–53.
  • Chou, S. Y. 1999. Nanoscale GaAs metal-semiconductor-metal photodetectors fabricated using nanoimprint lithography. Applied Physics Letters.
  • Kim, T., Canlier, A., Kim, G. H., Choi, J., Park, M., & Han, S. M. 2013. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Applied Materials & Interfaces, 5(3), 788–794.
  • Jin, X., et al. 2018. Bright alloy type-II quantum dots and their application to light-emitting diodes. Journal of Colloid and Interface Science, 510, 376–383.
  • Alexandrov, A., [et al.]. 2020. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Scientific Reports, 10(1), 1–11.
  • Berezin, K. V., & Nechaev, V. V. 2005. Calculation of the IR spectrum and the molecular structure of β- carotene. Journal of Applied Spectroscopy, 72(2), 164–171.
  • Schlücker, S., Szeghalmi, A., Schmitt, M., Popp, J., & Kiefer, W. 2003. Density functional and vibrational spectroscopic analysis of β-carotene. Journal of Raman Spectroscopy, 34(6), 413–419.
  • Ghorbani, M. M., & Taherian, R. 2018. Methods of measuring electrical properties of material. In Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications, 365–394.
  • Meenakshi, P., Karthick, R., Selvaraj, M., & Ramu, S. 2014. Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Solar Energy Materials and Solar Cells, 128, 264–269.
  • Tang, Y., et al. 2018. Low-temperature solution processed flexible silver nanowires/ZnO composite electrode with enhanced performance and stability. Journal of Alloys and Compounds, 747, 659–665.
  • Khorsand Zak, A., Razali, R., Abd Majid, W. H., & Darroudi, M. 2011. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 6(1), 1399–1403.
  • Singh, D. K., Pandey, D. K., Yadav, R. R., & Singh, D. 2012. A study of nanosized zinc oxide and its nanofluid. Pramana - Journal of Physics, 78(5), 759–766.
  • Aldalbahi, A., et al. 2020. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules, 25(18).
  • Alam, F., & Balani, K. 2017. Role of silver/zinc oxide in affecting de-adhesion strength of Staphylococcus aureus on polymer biocomposites. Materials Science and Engineering C: Materials for Biological Applications, 75, 1106–1114.
  • Zhang, J., Chia, A. C. E., & Lapierre, R. R. 2014. Low resistance indium tin oxide contact to n-GaAs nanowires. Semiconductor Science and Technology, 29(5), 054002.
  • Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13.
  • Kang, S. W., Lee, H. J., Cho, S. H., Cheong, W. S., Lee, G. H., & Song, P. K. 2012. Effects of Sn concentration on ultrathin ITO films deposited using DC magnetron sputtering. Journal of Nanoelectronics and Optoelectronics, 7(5), 494–497.
  • Kitova, S., Mankov, V., Dimov,D., Strijkova, V., Malinowski,N. 2021.High quality ITO thin films for application as conductive transparent electrodes." Bulgarian Chemical Communications 48, 196-201.
  • Hussain, S. Q., et al. 2014. RF magnetron sputtered ITO:Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells. Metals and Materials International, 20(3), 565–569.
  • Mazur, M., Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Song, S., & Placido, F. 2010. Influence of thickness on transparency and sheet resistance of ITO thin films. In The Eighth International Conference on Advanced Semiconductor Devices and Microsystems, 65–68.
  • Xu, K., Zhou, W., Ning, Z., Xu, K., Zhou, W., & Ning, Z. 2020. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small, 16(47), 2003397.
  • Hui, R., & O’Sullivan, M. 2009. Fiber Optic Measurement Techniques. Fiber Optic Measurement Techniques.
  • Pu, K., et al. 2023. A flexible sensitive visible-NIR organic photodetector with high durability. Advanced Materials Technologies, 8(16), 2300207.
  • Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A., & Hirsch, L. 2016. Long-term stable organic photodetectors with ultra-low dark currents for high detectivity applications. Scientific Reports, 6(1), 1–11.
  • Dang, Q., et al. 2023. Enhanced gain in organic photodetectors using the polymer with singlet open-shell ground state. Angewandte Chemie, e202312538.
  • Liu, Q., et al. 2019. Hybrid Graphene/Cu2O Quantum Dot Photodetectors with Ultrahigh Responsivity. Advanced Optical Materials, 7(20), 1900455.
  • Wu, X., Zhao, B., Zhang, J., Xu, H., Xu, K., & Chen, G. 2019. Photoluminescence and Photodetecting Properties of the Hydrothermally Synthesized Nitrogen-Doped Carbon Quantum Dots. Journal of Physical Chemistry C, 123(42), 25570–25578.
  • Kwak, D. H., Ramasamy, P., Lee, Y. S., Jeong, M. H., Lee, J. S. 2019. High-Performance Hybrid InP QDs/Black Phosphorus Photodetector. ACS Appl. Mater. Interfaces, 11(32), 29041-29046.
  • Ren, H., Chen, J. D., Li, Y. Q., Tang, J. X. 2021. Recent Progress in Organic Photodetectors and their Applications. Advanced Science, 8(1).
  • Hu, L., [et al.]. 2014. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon N Y, 67, 508–513.
  • Nasilowski, M., [et al.]. 2015. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield. Nano Lett, 15(6), 3953–3958.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotovoltaik Güç Sistemleri, Nanofotonik
Bölüm Makale
Yazarlar

Muzeyyen Savas

Beyza Bozkurt

Dilber Akcan

Ruby Phul

Talha Erdem

Zeliha Soran Erdem 0000-0001-7607-9286

Proje Numarası 123M876
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 26 Nisan 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 2

Kaynak Göster

APA Savas, M., Bozkurt, B., Akcan, D., Phul, R., vd. (2024). Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(2), 372-382.
AMA Savas M, Bozkurt B, Akcan D, Phul R, Erdem T, Soran Erdem Z. Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2024;40(2):372-382.
Chicago Savas, Muzeyyen, Beyza Bozkurt, Dilber Akcan, Ruby Phul, Talha Erdem, ve Zeliha Soran Erdem. “Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 2 (Ağustos 2024): 372-82.
EndNote Savas M, Bozkurt B, Akcan D, Phul R, Erdem T, Soran Erdem Z (01 Ağustos 2024) Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 2 372–382.
IEEE M. Savas, B. Bozkurt, D. Akcan, R. Phul, T. Erdem, ve Z. Soran Erdem, “Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 2, ss. 372–382, 2024.
ISNAD Savas, Muzeyyen vd. “Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/2 (Ağustos 2024), 372-382.
JAMA Savas M, Bozkurt B, Akcan D, Phul R, Erdem T, Soran Erdem Z. Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:372–382.
MLA Savas, Muzeyyen vd. “Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 2, 2024, ss. 372-8.
Vancouver Savas M, Bozkurt B, Akcan D, Phul R, Erdem T, Soran Erdem Z. Semiconducting Plant Extracts of Cucurbita Pepo L. Seeds for Facile, Inexpensive, Fully Solution-Processed, Transparent Photodetector Fabrication. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(2):372-8.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.