Araştırma Makalesi
BibTex RIS Kaynak Göster

Smart Classroom Attendance and Management System with Deep Learning

Yıl 2024, Cilt: 40 Sayı: 3, 487 - 497, 30.12.2024

Öz

The evolution of traditional educational methods highlights the necessity to adapt to new technologies. This study aims to facilitate the attendance-taking processes in the education sector through automation. Addressing challenges such as time loss, accuracy issues, and the fragmentation of class periods associated with paper-based attendance methods, we introduce the Smart Classroom Attendance and Management System. Our study utilizes facial recognition technology to scan the facial features of each student, providing a unique biometric identification and automatically enrolling students in the class. This allows students to be automatically recorded upon entering the classroom, eliminating the need for paper-based attendance. Additionally, it is supported by a mobile application, we provide two different panels for teachers and students, minimizing human errors. Students can view and verify attendance information through the application at the end of the class, while teachers can approve the recorded attendance, thereby enhancing the reliability of the system. In conclusion, the Smart Classroom Attendance and Management System offers an innovative approach to overcome the challenges posed by traditional methods and make educational processes more efficient. Representing the transformation of automation in the education sector, this study aims to contribute to a more effective learning experience for both students and teachers.

Kaynakça

  • [1] Ching Hisang Chang, “Smart Classroom Roll Caller System with IOT Architecture” 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications 16-18-2011, Shenzen, China. IEEE 02 January 2012. https://ieeexplore.ieee.org/abstract/document/6118772
  • [2] Mingtao Zhao, Gang Zhao, Meihong Qu, “College Smart Classroom Attendance Management System Based on Internet of Things”. Volume 2022 | Article ID 4953721 , https://doi.org/10.1155/2022/4953721
  • [3] Gökhan Şengül, Murat Karakaya, Atilla Bostan, “A Smart Classroom Application, Monitoring and Reporting Attendance Automatically Using Smart Devices” International Journal of Scientific Research in Information Systems and Engineering Volume 3, issue 1, April – 2017. ISSN 2380-8128.
  • [4] Harshad Sutar, Suyash Chaudhari, Pritam Bhopi, and Dipashri Sonavale, “Automated Attendance System,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 04, 2022.
  • [5]Jenif W. S. D’Souza, S. Jothi, A. Chandrasekar, “Automated Attendance Marking and Management System by Facial Recognition Using Histogram” in 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, doi: 10.1109/ICACCS.2019.8728399.
  • [6] Aipruk Puckdeevongs, N. K. Tripathi, Apichon Witayangkurn, Poompat Saengudomlert, “Classroom Attendance Systems Based on Bluetooth Low Energy Indoor Positioning Technology for Smart Campus”, Remote Sensing and Geographic Information Systems Field of Study, School of Engineering and Technology, Asian Institute of Technology. Telecommunications Field of Study, School of Engineering and Technology, Asian Institute of Technology vol.11 No.329 ,2020.
  • [7] Vaishnavi Hava, Seema Kale, Arun Bairagi, Chandan Prasad, Sagar Chatterjee, Anish Varghese, “Free & Generic Facial Attendance System using Android” Int. Res. J. Eng. Technol., vol. 06, no. 09, p. 6, 2019.
  • [8]M. A. J. Hameed, “Android-based Smart Student Attendance System” Int. Res. J. Eng. Technol., vol. 12, pp. 2356– 2395, 2017. Detection,” in 2016 Online international conference on green engineering and technologies, 2016.
  • [9] Basheer K. P. Mohamed, C.V. Raghu, “Fingerprint Attendance System for Classroom Needs,” 2012 Annual IEEE India Conference, INDICON 2012, 2012, doi: 10.1109/INDCON.2012.6420657. https://ieeexplore.ieee.org/abstract/document/6420657
  • [10] Chien-wen Shen, Yen-Chun Jim Wu, Tsung-Che Lee, “Developing a NFC-Equipped Smart Classroom: Effects on Attitudes Toward Computer Science” Computers in Human Behavior Volume 30 January 2014, Pages 731- 738.
  • [11] P. S. H. Smitha, “Face Recognition based Attendance Management System” Int. J. Eng. Res. & Technol., vol. 9, no. 05, 2020.
  • [12] Atanu Shuvam Roy, Hong Lan, Mehdi Gheisari, Aqif AfzaalAbbasi, Ata Jahangir Moshayedi, Liefa liao, Seyed Mojtaba Hosseini Bamakan, “Automation Attendance Systems Approaches: A Practical Review,” BOHR Int. J. Internet Things Res., vol. 1, no. 1, pp. 7–15, 2022.
  • [13] Siti Aisah Mohd Noor, Norliza Zaini, Mohd Fuad Abdul Latip,Nabilah Hamzah, “Android-Based Attendance Management System,” in 2015 IEEE Conference on Systems, Process and Control (ICSPC), 2015, pp. 118–122.
  • [14] Yoganathan N. S., Raviteja S., Sathyanarayanan R., Anup Kumar, Nithish Kumar R. ,“Location Based Smart Attendance System Using GPS” Ann. Rom. Soc. Cell Biol., vol. 25, no. 2, pp. 4510–4516, 2021, [Online]. Available: http://annalsofrscb.ro
  • [15] Mubarak Salem Mubarak Alburaiki, Gapar Md Johar, Rabap Alayam Abbas Helmi, Mohammed Hazim Alkawaz, “Mobile Based Attendance System: Face Recognition and Location Detection using Machine Learning” in 2021 IEEE 12th Control and System Graduate Research Colloquium, , 07 July 2021, doi: 10.1109/ICSGRC53186.2021.9515221.
  • [16] E. Varadharajan, R. Dharani, S. Jeevitha, B. Kavinmathi, and S. Hemalatha, “Automatic Attendance Management System using Face Detection” in 2016 Online international conference on green engineering and technologies, 2016.
  • [17] Vidit Jain and Erik Learned-Miller, FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical Report UM-CS-2010-009, Dept. of Computer Science, University of Massachusetts, Amherst. 2010.
  • [18] Kazemi Vahid and Josephine Sullivan. "One millisecond face alignment with an ensemble of regression trees." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
  • [19] Adam Geitgey “Modern Face Recognition with Deep Learning”, https://medium.com/@ageitgey/machine- learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
  • [20] The 68 landmarks locate on every face. This figure was created by Brandon Amos of CMU who works on OpenFace. https://bamos.github.io/

Derin Öğrenme ile Akıllı Sınıf Yoklama ve Yönetim Sistemi

Yıl 2024, Cilt: 40 Sayı: 3, 487 - 497, 30.12.2024

Öz

Öz: Geleneksel eğitim metodlarının evrimi, teknolojik gelişmelere uyum sağlama ihtiyacını doğurmuştur. Bu çalışma, eğitim sektöründeki yoklama alma süreçlerini otomasyon ile kolaylaştırmayı amaçlamaktadır. Kağıt tabanlı yoklama sistemlerinin zaman kaybı, doğruluk sorunları ve ders sürelerinin bölünmesi gibi zorluklarını ele alarak, Akıllı Sınıf Yoklama ve Yönetim Sistemi tasarlanmıştır. Bu sistem, yüz tanıma teknolojisi kullanarak her öğrencinin yüz hatlarını tarar ve benzersiz bir biyometrik tanımlama sağlayarak öğrencileri otomatik olarak sınıfa kaydetmektedir. Bu, öğrencilerin sınıfa girişlerini otomatik olarak kaydetmelerine imkan tanımakta ve kağıt tabanlı yoklamaların gereksizliğini ortadan kaldırmaktadır. Ayrıca, bu çalışmada mobil bir uygulama ile desteklenerek öğretmenlere ve öğrencilere iki ayrı panel sunulmaktadır. Bu sayede, insan hataları en aza indirgenmiştir. Öğrenciler, dersin sonunda uygulama aracılığıyla yoklama bilgilerini görüntüleyebilir ve doğrulayabilirken, öğretmenler de alınan yoklamaları onaylayarak sistemin güvenilirliğini artırmaktadır. Sonuç olarak, Akıllı Sınıf Yoklama ve Yönetim Sistemi, geleneksel yöntemlerin zorluklarını aşmak ve eğitim süreçlerini daha verimli hale getirmek için yenilikçi bir yaklaşım sunmaktadır. Bu çalışma, eğitim sektöründe otomasyon dönüşümünü temsil etmektedir ve öğrenciler ile öğretmenlerin daha etkili bir ders deneyimi yaşamasına katkı sağlamayı hedeflemektedir.

Kaynakça

  • [1] Ching Hisang Chang, “Smart Classroom Roll Caller System with IOT Architecture” 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications 16-18-2011, Shenzen, China. IEEE 02 January 2012. https://ieeexplore.ieee.org/abstract/document/6118772
  • [2] Mingtao Zhao, Gang Zhao, Meihong Qu, “College Smart Classroom Attendance Management System Based on Internet of Things”. Volume 2022 | Article ID 4953721 , https://doi.org/10.1155/2022/4953721
  • [3] Gökhan Şengül, Murat Karakaya, Atilla Bostan, “A Smart Classroom Application, Monitoring and Reporting Attendance Automatically Using Smart Devices” International Journal of Scientific Research in Information Systems and Engineering Volume 3, issue 1, April – 2017. ISSN 2380-8128.
  • [4] Harshad Sutar, Suyash Chaudhari, Pritam Bhopi, and Dipashri Sonavale, “Automated Attendance System,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 04, 2022.
  • [5]Jenif W. S. D’Souza, S. Jothi, A. Chandrasekar, “Automated Attendance Marking and Management System by Facial Recognition Using Histogram” in 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, doi: 10.1109/ICACCS.2019.8728399.
  • [6] Aipruk Puckdeevongs, N. K. Tripathi, Apichon Witayangkurn, Poompat Saengudomlert, “Classroom Attendance Systems Based on Bluetooth Low Energy Indoor Positioning Technology for Smart Campus”, Remote Sensing and Geographic Information Systems Field of Study, School of Engineering and Technology, Asian Institute of Technology. Telecommunications Field of Study, School of Engineering and Technology, Asian Institute of Technology vol.11 No.329 ,2020.
  • [7] Vaishnavi Hava, Seema Kale, Arun Bairagi, Chandan Prasad, Sagar Chatterjee, Anish Varghese, “Free & Generic Facial Attendance System using Android” Int. Res. J. Eng. Technol., vol. 06, no. 09, p. 6, 2019.
  • [8]M. A. J. Hameed, “Android-based Smart Student Attendance System” Int. Res. J. Eng. Technol., vol. 12, pp. 2356– 2395, 2017. Detection,” in 2016 Online international conference on green engineering and technologies, 2016.
  • [9] Basheer K. P. Mohamed, C.V. Raghu, “Fingerprint Attendance System for Classroom Needs,” 2012 Annual IEEE India Conference, INDICON 2012, 2012, doi: 10.1109/INDCON.2012.6420657. https://ieeexplore.ieee.org/abstract/document/6420657
  • [10] Chien-wen Shen, Yen-Chun Jim Wu, Tsung-Che Lee, “Developing a NFC-Equipped Smart Classroom: Effects on Attitudes Toward Computer Science” Computers in Human Behavior Volume 30 January 2014, Pages 731- 738.
  • [11] P. S. H. Smitha, “Face Recognition based Attendance Management System” Int. J. Eng. Res. & Technol., vol. 9, no. 05, 2020.
  • [12] Atanu Shuvam Roy, Hong Lan, Mehdi Gheisari, Aqif AfzaalAbbasi, Ata Jahangir Moshayedi, Liefa liao, Seyed Mojtaba Hosseini Bamakan, “Automation Attendance Systems Approaches: A Practical Review,” BOHR Int. J. Internet Things Res., vol. 1, no. 1, pp. 7–15, 2022.
  • [13] Siti Aisah Mohd Noor, Norliza Zaini, Mohd Fuad Abdul Latip,Nabilah Hamzah, “Android-Based Attendance Management System,” in 2015 IEEE Conference on Systems, Process and Control (ICSPC), 2015, pp. 118–122.
  • [14] Yoganathan N. S., Raviteja S., Sathyanarayanan R., Anup Kumar, Nithish Kumar R. ,“Location Based Smart Attendance System Using GPS” Ann. Rom. Soc. Cell Biol., vol. 25, no. 2, pp. 4510–4516, 2021, [Online]. Available: http://annalsofrscb.ro
  • [15] Mubarak Salem Mubarak Alburaiki, Gapar Md Johar, Rabap Alayam Abbas Helmi, Mohammed Hazim Alkawaz, “Mobile Based Attendance System: Face Recognition and Location Detection using Machine Learning” in 2021 IEEE 12th Control and System Graduate Research Colloquium, , 07 July 2021, doi: 10.1109/ICSGRC53186.2021.9515221.
  • [16] E. Varadharajan, R. Dharani, S. Jeevitha, B. Kavinmathi, and S. Hemalatha, “Automatic Attendance Management System using Face Detection” in 2016 Online international conference on green engineering and technologies, 2016.
  • [17] Vidit Jain and Erik Learned-Miller, FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical Report UM-CS-2010-009, Dept. of Computer Science, University of Massachusetts, Amherst. 2010.
  • [18] Kazemi Vahid and Josephine Sullivan. "One millisecond face alignment with an ensemble of regression trees." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
  • [19] Adam Geitgey “Modern Face Recognition with Deep Learning”, https://medium.com/@ageitgey/machine- learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
  • [20] The 68 landmarks locate on every face. This figure was created by Brandon Amos of CMU who works on OpenFace. https://bamos.github.io/
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Örüntü Tanıma, Derin Öğrenme, Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

İbrahim Ardıç

Batuhan Yıldızhan

Kübra Uyar

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 23 Haziran 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 3

Kaynak Göster

APA Ardıç, İ., Yıldızhan, B., & Uyar, K. (2024). Smart Classroom Attendance and Management System with Deep Learning. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(3), 487-497.
AMA Ardıç İ, Yıldızhan B, Uyar K. Smart Classroom Attendance and Management System with Deep Learning. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Aralık 2024;40(3):487-497.
Chicago Ardıç, İbrahim, Batuhan Yıldızhan, ve Kübra Uyar. “Smart Classroom Attendance and Management System With Deep Learning”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 3 (Aralık 2024): 487-97.
EndNote Ardıç İ, Yıldızhan B, Uyar K (01 Aralık 2024) Smart Classroom Attendance and Management System with Deep Learning. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 3 487–497.
IEEE İ. Ardıç, B. Yıldızhan, ve K. Uyar, “Smart Classroom Attendance and Management System with Deep Learning”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, ss. 487–497, 2024.
ISNAD Ardıç, İbrahim vd. “Smart Classroom Attendance and Management System With Deep Learning”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/3 (Aralık 2024), 487-497.
JAMA Ardıç İ, Yıldızhan B, Uyar K. Smart Classroom Attendance and Management System with Deep Learning. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:487–497.
MLA Ardıç, İbrahim vd. “Smart Classroom Attendance and Management System With Deep Learning”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, 2024, ss. 487-9.
Vancouver Ardıç İ, Yıldızhan B, Uyar K. Smart Classroom Attendance and Management System with Deep Learning. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(3):487-9.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.